These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Effects of surface potential and membrane potential on the midpoint potential of cytochrome c-555 bound to the chromatophore membrane of Chromatium vinosum. Itoh S. Biochim Biophys Acta; 1980 Jul 08; 591(2):346-55. PubMed ID: 6249347 [Abstract] [Full Text] [Related]
6. Regulation of electron transfer by sidedness-dependent surface pH. Dependence of the rate of cytochrome c-555 reduction on H+ concentration in the surface region on the periplasmic side of photosynthetic membranes in whole cells, spheroplasts and chromatophores of Chromatium vinosum. Hashimoto K, Nishimura M. J Biochem; 1981 Mar 08; 89(3):909-18. PubMed ID: 6270069 [No Abstract] [Full Text] [Related]
11. Electron transport by C-type cytochromes. I. The reaction of horse heart cytochrome c with anionic reductants. Miller WG, Cusanovich MA. Biophys Struct Mech; 1975 Feb 19; 1(2):97-111. PubMed ID: 10021 [Abstract] [Full Text] [Related]
12. The effect of complex formation upon the reduction rates of cytochrome c and cytochrome c peroxidase compound II. Cokic P, Erman JE. Biochim Biophys Acta; 1987 Jul 07; 913(3):257-71. PubMed ID: 3036233 [Abstract] [Full Text] [Related]
13. Mechanism of proton translocation associated to oxidation of N,N,N',N'-tetramethyl-p-phenylenediamine in rat liver mitochondria. Papa S, Guerrieri F, Izzo G, Boffoli D. FEBS Lett; 1983 Jun 27; 157(1):15-20. PubMed ID: 6305713 [Abstract] [Full Text] [Related]
14. Chromatium flavocytochrome c: kinetics of reduction of the heme subunit, and the flavocytochrome c-mitochondrial cytochrome c complex. Meyer TE, Vorkink WP, Tollin G, Cusanovich MA. Arch Biochem Biophys; 1985 Jan 27; 236(1):52-8. PubMed ID: 2981511 [Abstract] [Full Text] [Related]
15. Chromatium vinosum cytochrome c-552. Reduction by photoreduced flavins and intramolecular electron transfer. Cusanovich MA, Tollin G. Biochemistry; 1980 Jul 08; 19(14):3343-7. PubMed ID: 6250567 [Abstract] [Full Text] [Related]
16. NADH oxidation by quinone electron acceptors. Cénas NK, Kanapieniené JJ, Kulys JJ. Biochim Biophys Acta; 1984 Oct 26; 767(1):108-12. PubMed ID: 6487613 [Abstract] [Full Text] [Related]
17. Ferrocyanide as electron donor to cytochrome aa3. Cytochrome c requirement for oxygen uptake. Krab K, Slater EC. Biochim Biophys Acta; 1979 Jul 10; 547(1):58-69. PubMed ID: 223635 [Abstract] [Full Text] [Related]
18. Binding of cyanide to cytochrome c' from Chromatium vinosum. Kassner RJ, Kykta MG, Cusanovich MA. Biochim Biophys Acta; 1985 Sep 20; 831(1):155-8. PubMed ID: 2994739 [Abstract] [Full Text] [Related]
19. The role of high-potential iron protein and cytochrome c(8) as alternative electron donors to the reaction center of Chromatium vinosum. Verméglio A, Li J, Schoepp-Cothenet B, Pratt N, Knaff DB. Biochemistry; 2002 Jul 16; 41(28):8868-75. PubMed ID: 12102629 [Abstract] [Full Text] [Related]
20. Generation of superoxide radical, hydrogen peroxide and hydroxyl radical during the autoxidation of N,N,N',N'-tetramethyl-p-phenylenediamine. Munday R. Chem Biol Interact; 1988 Jul 16; 65(2):133-43. PubMed ID: 2835187 [Abstract] [Full Text] [Related] Page: [Next] [New Search]