These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


450 related items for PubMed ID: 6288776

  • 1. Synaptic complexes formed by functionally defined primary afferent units with fine myelinated fibers.
    Réthelyi M, Light AR, Perl ER.
    J Comp Neurol; 1982 Jun 01; 207(4):381-93. PubMed ID: 6288776
    [Abstract] [Full Text] [Related]

  • 2. Spinal termination of functionally identified primary afferent neurons with slowly conducting myelinated fibers.
    Light AR, Perl ER.
    J Comp Neurol; 1979 Jul 15; 186(2):133-50. PubMed ID: 109477
    [Abstract] [Full Text] [Related]

  • 3. Morphological features of functionally defined neurons in the marginal zone and substantia gelatinosa of the spinal dorsal horn.
    Light AR, Trevino DL, Perl ER.
    J Comp Neurol; 1979 Jul 15; 186(2):151-71. PubMed ID: 447881
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Morphology of terminations of small and large myelinated trigeminal primary afferent fibers in the cat.
    Hayashi H.
    J Comp Neurol; 1985 Oct 01; 240(1):71-89. PubMed ID: 4056105
    [Abstract] [Full Text] [Related]

  • 6. Excitation of marginal and substantia gelatinosa neurons in the primate spinal cord: indications of their place in dorsal horn functional organization.
    Kumazawa T, Perl ER.
    J Comp Neurol; 1978 Feb 01; 177(3):417-34. PubMed ID: 412881
    [Abstract] [Full Text] [Related]

  • 7. Synaptic interactions between GABA-immunoreactive profiles and the terminals of functionally defined myelinated nociceptors in the monkey and cat spinal cord.
    Alvarez FJ, Kavookjian AM, Light AR.
    J Neurosci; 1992 Aug 01; 12(8):2901-17. PubMed ID: 1494939
    [Abstract] [Full Text] [Related]

  • 8. Light and electron microscopic localization of calcitonin gene-related peptide immunoreactivity in lamina II of the feline trigeminal pars caudalis/medullary dorsal horn: a qualitative study.
    Henry MA, Nousek-Goebl NA, Westrum LE.
    Synapse; 1993 Feb 01; 13(2):99-107. PubMed ID: 8446923
    [Abstract] [Full Text] [Related]

  • 9. The fine structure of laminae IV, V, and VI of the Macaque spinal cord.
    Ralston HJ.
    J Comp Neurol; 1982 Dec 20; 212(4):425-34. PubMed ID: 7161419
    [Abstract] [Full Text] [Related]

  • 10. Fine structure and synaptic architecture of HRP-labelled primary afferent terminations in lamina IIi of the rat dorsal horn.
    Cruz F, Lima D, Zieglgänsberger W, Coimbra A.
    J Comp Neurol; 1991 Mar 01; 305(1):3-16. PubMed ID: 2033122
    [Abstract] [Full Text] [Related]

  • 11. Morphology of central terminations of intra-axonally stained, large, myelinated primary afferent fibers from facial skin in the rat.
    Hayashi H.
    J Comp Neurol; 1985 Jul 08; 237(2):195-215. PubMed ID: 2993374
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Afferent fibers in the substantia gelatinosa of the adult monkey (Macaca mulatta): a Golgi study.
    Beal JA, Fox CA.
    J Comp Neurol; 1976 Jul 01; 168(1):113-43. PubMed ID: 819467
    [Abstract] [Full Text] [Related]

  • 14. Morphology and ultrastructure of physiologically identified substantia gelatinosa (lamina II) neurons with axons that terminate in deeper dorsal horn laminae (III-V).
    Light AR, Kavookjian AM.
    J Comp Neurol; 1988 Jan 08; 267(2):172-89. PubMed ID: 3343395
    [Abstract] [Full Text] [Related]

  • 15. Two types of synaptic glomeruli and their distribution in laminae I-III of the rat spinal cord.
    Ribeiro-da-Silva A, Coimbra A.
    J Comp Neurol; 1982 Aug 01; 209(2):176-86. PubMed ID: 6890076
    [Abstract] [Full Text] [Related]

  • 16. The distribution of dorsal root axons to laminae IV, V, and VI of the Macaque spinal cord: a quantitative electron microscopic study.
    Ralston HJ, Ralston DD.
    J Comp Neurol; 1982 Dec 20; 212(4):435-48. PubMed ID: 6891705
    [Abstract] [Full Text] [Related]

  • 17. Morphology of physiologically identified slowly adapting lung stretch receptor afferents stained with intra-axonal horseradish peroxidase in the nucleus of the tractus solitarius of the cat. II. An ultrastructural analysis.
    Kalia M, Richter D.
    J Comp Neurol; 1985 Nov 22; 241(4):521-35. PubMed ID: 4078045
    [Abstract] [Full Text] [Related]

  • 18. Rapidly adapting pulmonary receptor afferents: II. Fine structure and synaptic organization of central terminal processes in the nucleus of the tractus solitarius.
    Kalia M, Richter D.
    J Comp Neurol; 1988 Aug 22; 274(4):574-94. PubMed ID: 2464625
    [Abstract] [Full Text] [Related]

  • 19. The terminations of corticospinal tract axons in the macaque monkey.
    Ralston DD, Ralston HJ.
    J Comp Neurol; 1985 Dec 15; 242(3):325-37. PubMed ID: 2418074
    [Abstract] [Full Text] [Related]

  • 20. An electron microscopic study of terminals of rapidly adapting mechanoreceptive afferent fibers in the cat spinal cord.
    Semba K, Masarachia P, Malamed S, Jacquin M, Harris S, Yang G, Egger MD.
    J Comp Neurol; 1985 Feb 08; 232(2):229-40. PubMed ID: 3973092
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 23.