These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
66 related items for PubMed ID: 6292689
1. Magnesium regulation of the beta-receptor-adenylate cyclase complex. II. Sc3+ as a Mg2 antagonist. Maguire ME. Mol Pharmacol; 1982 Sep; 22(2):274-80. PubMed ID: 6292689 [Abstract] [Full Text] [Related]
2. Distinctions in beta-adrenergic receptor interactions with the magnesium-guanine nucleotide coupling proteins in turkey erythrocyte and S49 lymphoma membranes. Vauquelin G, Cech SY, André C, Strosberg AD, Maguire ME. J Cyclic Nucleotide Res; 1982 Sep; 8(3):149-62. PubMed ID: 6300206 [Abstract] [Full Text] [Related]
3. Demonstration of beta-2 adrenergic receptors of high coupling efficiency in human neutrophil sonicates. Galant SP, Allred SJ. J Lab Clin Med; 1980 Jul; 96(1):15-23. PubMed ID: 6248606 [Abstract] [Full Text] [Related]
4. Multiple sites of action of ethanol on adenylate cyclase. Rabin RA, Molinoff PB. J Pharmacol Exp Ther; 1983 Dec; 227(3):551-6. PubMed ID: 6606704 [Abstract] [Full Text] [Related]
5. Expression of beta-adrenergic receptors in synchronous and asynchronous S49 lymphoma cells. II. Relationship between receptor number and response. Mahan LC, Insel PA. Mol Pharmacol; 1986 Jan; 29(1):16-22. PubMed ID: 3003560 [Abstract] [Full Text] [Related]
6. Hormonal inhibition of adenylate cyclase. A crucial role for Mg2+. Bockaert J, Cantau B, Sebben-Perez M. Mol Pharmacol; 1984 Sep; 26(2):180-6. PubMed ID: 6541292 [Abstract] [Full Text] [Related]
7. Effect of dithiothreitol on the beta-adrenergic receptor of S49 wild type and cyc- lymphoma cells: decreased affinity of the ligand-receptor interaction. Clark RB, Green DA, Rashidbaigi A, Ruoho A. J Cyclic Nucleotide Protein Phosphor Res; 1983 Sep; 9(3):203-20. PubMed ID: 6321573 [Abstract] [Full Text] [Related]
8. Muscarinic cholinergic receptor-mediated attenuation of adenylate cyclase activity in rat heart membranes. Smith MM, Harden TK. J Cyclic Nucleotide Protein Phosphor Res; 1985 Sep; 10(2):197-210. PubMed ID: 3998232 [Abstract] [Full Text] [Related]
9. Magnesium regulation of the beta-receptor-adenylate cyclase complex. I. Effects of manganese on receptor binding and cyclase activation. Cech SY, Maguire ME. Mol Pharmacol; 1982 Sep; 22(2):267-73. PubMed ID: 6292688 [No Abstract] [Full Text] [Related]
10. Characterization of adenylate cyclase-coupled alpha 2-adrenergic receptors in rat renal cortex using [3H]yohimbine. Woodcock EA, Johnston CI. Mol Pharmacol; 1982 Nov; 22(3):589-94. PubMed ID: 6296653 [Abstract] [Full Text] [Related]
11. Influence of Mg2+ on the in vitro responsiveness of adenylate cyclase from hearts of aging rats. Pignatti C, Tantini B, Zanfanti ML, Sacchi P, Clo C. Cardioscience; 1993 Jun; 4(2):105-9. PubMed ID: 8347790 [Abstract] [Full Text] [Related]
12. Epinephrine desensitization of adenylate cyclase from cyc- and S49 cultured lymphoma cells. Green DA, Friedman J, Clark RB. J Cyclic Nucleotide Res; 1981 Jun; 7(3):161-72. PubMed ID: 7287968 [Abstract] [Full Text] [Related]
13. BW373U86: a nonpeptidic delta-opioid agonist with novel receptor-G protein-mediated actions in rat brain membranes and neuroblastoma cells. Childers SR, Fleming LM, Selley DE, McNutt RW, Chang KJ. Mol Pharmacol; 1993 Oct; 44(4):827-34. PubMed ID: 8232233 [Abstract] [Full Text] [Related]
14. Analysis of receptor-mediated activation of GTP-binding protein/adenylate cyclase using the encounter coupling model. Stickle D, Barber R. Mol Pharmacol; 1993 Mar; 43(3):397-411. PubMed ID: 8095693 [Abstract] [Full Text] [Related]
15. Beta-adrenergic receptor overexpression in the fetal rat: distribution, receptor subtypes, and coupling to adenylate cyclase activity via G-proteins. Slotkin TA, Lau C, Seidler FJ. Toxicol Appl Pharmacol; 1994 Dec; 129(2):223-34. PubMed ID: 7992312 [Abstract] [Full Text] [Related]
16. Modification of G protein-coupled functions by low-pH pretreatment of membranes from NG108-15 cells: increase in opioid agonist efficacy by decreased inactivation of G proteins. Selley DE, Breivogel CS, Childers SR. Mol Pharmacol; 1993 Oct; 44(4):731-41. PubMed ID: 8232223 [Abstract] [Full Text] [Related]
17. Ontogeny of regulatory mechanisms for beta-adrenoceptor control of rat cardiac adenylyl cyclase: targeting of G-proteins and the cyclase catalytic subunit. Zeiders JL, Seidler FJ, Slotkin TA. J Mol Cell Cardiol; 1997 Feb; 29(2):603-15. PubMed ID: 9140819 [Abstract] [Full Text] [Related]
18. Functional uncoupling of muscarinic receptors from adenylate cyclase in rat cardiac membranes by the active component of islet-activating protein, pertussis toxin. Kurose H, Ui M. J Cyclic Nucleotide Protein Phosphor Res; 1983 Feb; 9(4-5):305-18. PubMed ID: 6687224 [Abstract] [Full Text] [Related]
19. Characterization of the rabbit ventricular myocardial receptor for angiotensin II. Evidence for two sites of different affinities and specificities. Wright GB, Alexander RW, Ekstein LS, Gimbrone MA. Mol Pharmacol; 1983 Sep; 24(2):213-21. PubMed ID: 6310363 [Abstract] [Full Text] [Related]
20. Direct evidence for the role of the coupling proteins in forskolin activation of adenylate cyclase. Green DA, Clark RB. J Cyclic Nucleotide Res; 1982 Sep; 8(5):337-46. PubMed ID: 6892111 [Abstract] [Full Text] [Related] Page: [Next] [New Search]