These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
141 related items for PubMed ID: 6296861
1. Ascorbate-quinone interactions: electrochemical, free radical, and cytotoxic properties. Pethig R, Gascoyne PR, McLaughlin JA, Szent-Györgyi A. Proc Natl Acad Sci U S A; 1983 Jan; 80(1):129-32. PubMed ID: 6296861 [Abstract] [Full Text] [Related]
4. The reduction of anti-tumour diaziridinyl benzoquinones. Butler J, Hoey BM, Lea JS. Biochim Biophys Acta; 1987 Aug 13; 925(2):144-9. PubMed ID: 3040109 [Abstract] [Full Text] [Related]
5. Pro-oxidant activation of ocular reductants. 2. Lens epithelial cell cytotoxicity of a dietary quinone is associated with a stable free radical formed with glutathione in vitro. Wolff SP, Spector A. Exp Eye Res; 1987 Dec 13; 45(6):791-803. PubMed ID: 2828094 [Abstract] [Full Text] [Related]
6. Fully reversible redox cycling of 2,6-dimethoxy-1,4-benzoquinone induced by ascorbate. Roginsky VA, Bruchelt G, Stegmann HB. Biochemistry (Mosc); 1998 Feb 13; 63(2):200-6. PubMed ID: 9526115 [Abstract] [Full Text] [Related]
7. Effect of methoxy-p-benzoquinones and methoxy-p-hydroquinones on DNA synthesis in Ehrlich ascites tumor cells. Esterbauer H, Pölsler G, Fodor G. Acta Biochim Biophys Hung; 1987 Feb 13; 22(2-3):195-204. PubMed ID: 3118625 [Abstract] [Full Text] [Related]
8. Role of quinones in the ascorbate reduction rates of S-nitrosoglutathione. Sanchez-Cruz P, Garcia C, Alegria AE. Free Radic Biol Med; 2010 Nov 15; 49(9):1387-94. PubMed ID: 20691779 [Abstract] [Full Text] [Related]
9. Interaction between hydroquinone and ascorbic acid derivatives: quenching effect of organic solvents. Satoh K, Sakagami H, Terasaka H, Ida Y, Fujisawa S. Anticancer Res; 2000 Nov 15; 20(3A):1577-81. PubMed ID: 10928073 [Abstract] [Full Text] [Related]
10. Interaction of the 2,6-dimethoxysemiquinone and ascorbyl free radicals with Ehrlich ascites cells: a probe of cell-surface charge. Pethig R, Gascoyne PR, McLaughlin JA, Szent-Györgyi A. Proc Natl Acad Sci U S A; 1984 Apr 15; 81(7):2088-91. PubMed ID: 6585788 [Abstract] [Full Text] [Related]
11. A time-resolved electron spin resonance study of the oxidation of ascorbic acid by hydroxyl radical. Fessenden RW, Verma NC. Biophys J; 1978 Oct 15; 24(1):93-101. PubMed ID: 213133 [Abstract] [Full Text] [Related]
12. Synergism of dimethoxybenzosemiquinone free radicals and CD4+ T-lymphocytes to suppress Ehrlich ascites tumor. Morgan CD, Lefkowitz SS, Everse J. Proc Soc Exp Biol Med; 1998 Jan 15; 217(1):89-96. PubMed ID: 9421211 [Abstract] [Full Text] [Related]
13. Role of iron ion chelation by quinones in their reduction, OH-radical generation and lipid peroxidation. Dikalov S, Alov P, Rangelova D. Biochem Biophys Res Commun; 1993 Aug 31; 195(1):113-9. PubMed ID: 8395821 [Abstract] [Full Text] [Related]
14. Interaction between sodium ascorbate and dopamine. Sakagami H, Satoh K, Ida Y, Hosaka M, Arakawa H, Maeda M. Free Radic Biol Med; 1998 Dec 31; 25(9):1013-20. PubMed ID: 9870554 [Abstract] [Full Text] [Related]
15. Enhancement of antitumor activity of ascorbate against Ehrlich ascites tumor cells by the copper:glycylglycylhistidine complex. Kimoto E, Tanaka H, Gyotoku J, Morishige F, Pauling L. Cancer Res; 1983 Feb 31; 43(2):824-8. PubMed ID: 6293704 [Abstract] [Full Text] [Related]
16. A new electrochemical method for the production of stable ascorbate free radicals. Onal A, Oğüş A, Kisakürek D. J Biochem Biophys Methods; 1990 Jan 31; 20(2):137-42. PubMed ID: 2155960 [Abstract] [Full Text] [Related]
20. Characterization of free radicals produced during oxidation of etoposide (VP-16) and its catechol and quinone derivatives. An ESR Study. Kalyanaraman B, Nemec J, Sinha BK. Biochemistry; 1989 May 30; 28(11):4839-46. PubMed ID: 2548593 [Abstract] [Full Text] [Related] Page: [Next] [New Search]