These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


209 related items for PubMed ID: 6298937

  • 21. Certain characteristics of glycolysis regulation in loach oocytes.
    Yurovitskii YG, Mil'man LS, Ozernyuk ND.
    Sov J Dev Biol; 1972; 3(4):331-8. PubMed ID: 4266779
    [No Abstract] [Full Text] [Related]

  • 22. Bioenergetic consequences of catabolic shifts by Lactobacillus plantarum in response to shifts in environmental oxygen and pH in chemostat cultures.
    Tseng CP, Tsau JL, Montville TJ.
    J Bacteriol; 1991 Jul; 173(14):4411-6. PubMed ID: 2066338
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Glucose metabolic pathways in the anaerobic rumen fungus Neocallimastix frontalis EB188.
    O'Fallon JV, Wright RW, Calza RE.
    Biochem J; 1991 Mar 01; 274 ( Pt 2)(Pt 2):595-9. PubMed ID: 2006921
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. The maximum activities of hexokinase, phosphorylase, phosphofructokinase, glycerol phosphate dehydrogenases, lactate dehydrogenase, octopine dehydrogenase, phosphoenolpyruvate carboxykinase, nucleoside diphosphatekinase, glutamate-oxaloacetate transaminase and arginine kinase in relation to carbohydrate utilization in muscles from marine invertebrates.
    Zammit VA, Newsholme EA.
    Biochem J; 1976 Dec 15; 160(3):447-62. PubMed ID: 13783
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Metabolic requirements of schistosomes.
    Bueding E, Fisher J.
    J Parasitol; 1982 Apr 15; 68(2):208-12. PubMed ID: 7077454
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Energetics of Microbacterium thermosphactum in glucose-limited continuous culture.
    Hitchener BJ, Egan AF, Rogers PJ.
    Appl Environ Microbiol; 1979 Jun 15; 37(6):1047-52. PubMed ID: 114113
    [Abstract] [Full Text] [Related]

  • 36. Aerobic and anaerobic fermentation of glucose by Echinostoma liei.
    Schaefer FW, Saz HJ, Weinstein PP, Dunbar GA.
    J Parasitol; 1977 Aug 15; 63(4):687-9. PubMed ID: 886405
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Homolactate fermentation by metabolically engineered Escherichia coli strains.
    Zhu Y, Eiteman MA, DeWitt K, Altman E.
    Appl Environ Microbiol; 2007 Jan 15; 73(2):456-64. PubMed ID: 17122396
    [Abstract] [Full Text] [Related]

  • 39. Phosphorylating enzymes involved in glucose fermentation of Actinomyces naeslundii.
    Takahashi N, Kalfas S, Yamada T.
    J Bacteriol; 1995 Oct 15; 177(20):5806-11. PubMed ID: 7592327
    [Abstract] [Full Text] [Related]

  • 40. New insights into the complex regulation of the glycolytic pathway in Lactococcus lactis. II. Inference of the precisely timed control system regulating glycolysis.
    Dolatshahi S, Fonseca LL, Voit EO.
    Mol Biosyst; 2016 Jan 15; 12(1):37-47. PubMed ID: 26609780
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.