These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
124 related items for PubMed ID: 6298973
1. The metabolism of superoxide anion and its progeny in blood cells. Lynch RE. Top Curr Chem; 1983; 108():35-70. PubMed ID: 6298973 [No Abstract] [Full Text] [Related]
2. Characteristics of the cofactor requirements for the superoxide-generating NADPH oxidase of human polymorphonuclear leukocytes. Light DR, Walsh C, O'Callaghan AM, Goetzl EJ, Tauber AI. Biochemistry; 1981 Mar 17; 20(6):1468-76. PubMed ID: 6261795 [No Abstract] [Full Text] [Related]
3. NADPH oxidase of neutrophils forms superoxide anion but does not reduce cytochrome c and dichlorophenolindophenol. Bellavite P, della Bianca V, Serra MC, Papini E, Rossi F. FEBS Lett; 1984 May 07; 170(1):157-61. PubMed ID: 6327373 [Abstract] [Full Text] [Related]
4. Hydrogen peroxide production in a cell-free system: evidence for the involvement of a chain reaction. DeChatelet LR, McCall CE, Shirley PS. Adv Exp Med Biol; 1982 May 07; 141():371-81. PubMed ID: 6283831 [No Abstract] [Full Text] [Related]
5. Delineation of the catalytic components of the NADPH-dependent O2- generating oxidoreductase of human neutrophils. Green TR, Wirtz MK, Wu DE. Biochem Biophys Res Commun; 1983 Feb 10; 110(3):873-9. PubMed ID: 6301466 [Abstract] [Full Text] [Related]
6. Simultaneous demonstration of phagocytosis-connected oxygen consumption and corresponding NAD(P)H oxidase activity: direct evidence for NADPH as the predominant electron donor to oxygen in phagocytizing human neutrophils. Nakamura M, Baxter CR, Masters BS. Biochem Biophys Res Commun; 1981 Feb 12; 98(3):743-51. PubMed ID: 7225119 [No Abstract] [Full Text] [Related]
7. Mechanism of the superoxide-producing oxidase of neutrophils. O2 is necessary for the fast reduction of cytochrome b-245 by NADPH. Cross AR, Parkinson JF, Jones OT. Biochem J; 1985 Mar 15; 226(3):881-4. PubMed ID: 2985050 [Abstract] [Full Text] [Related]
8. Formation of superoxide anions and hydrogen peroxide by polymorphonuclear leukocytes stimulated with cytochalasin. Minakami S, Nabi ZF, Tatscheck B, Takeshige K. Adv Exp Med Biol; 1982 Mar 15; 141():361-70. PubMed ID: 6283830 [No Abstract] [Full Text] [Related]
9. The superoxide-generating NADPH oxidase of human neutrophils is electrogenic and associated with an H+ channel. Henderson LM, Chappell JB, Jones OT. Biochem J; 1987 Sep 01; 246(2):325-9. PubMed ID: 2825632 [Abstract] [Full Text] [Related]
10. An EPR study of the production of superoxide radicals by neutrophil NADPH oxidase. Bannister JV, Bellavite P, Serra MC, Thornalley PJ, Rossi F. FEBS Lett; 1982 Aug 23; 145(2):323-6. PubMed ID: 6290271 [No Abstract] [Full Text] [Related]
11. Abnormal activation of H+ conductance in NADPH oxidase-defective neutrophils. Nanda A, Grinstein S, Curnutte JT. Proc Natl Acad Sci U S A; 1993 Jan 15; 90(2):760-4. PubMed ID: 8421713 [Abstract] [Full Text] [Related]
12. Subcellular localization and properties of the NAD(P)H oxidase from equine polymorphonuclear leukocytes. Heyneman RA. Enzyme; 1983 Jan 15; 29(3):198-207. PubMed ID: 6303778 [Abstract] [Full Text] [Related]
13. Activation of NADPH oxidase and phosphorylation of membrane proteins in human neutrophils: coordinate inhibition by a surface antigen-directed monoclonal antibody. Pontremoli S, Melloni E, Salamino F, Sparatore B, Michetti M, Sacco O, Horecker BL. Biochem Biophys Res Commun; 1986 Nov 14; 140(3):1121-6. PubMed ID: 3022733 [Abstract] [Full Text] [Related]
14. Flow cytometric analysis of oxidase activity of neutrophils from chronic granulomatous disease patients. Hassan NF, Campbell DE, Douglas SD. Adv Exp Med Biol; 1988 Nov 14; 239():73-8. PubMed ID: 3202042 [No Abstract] [Full Text] [Related]
15. Leukotriene B4 metabolism in neutrophils of patients with chronic granulomatous disease: phorbol myristate acetate decreases endogenous leukotriene B4 via NADPH oxidase-dependent mechanism. Hamasaki T, Sakano T, Kobayashi M, Sakura N, Ueda K, Usui T. Eur J Clin Invest; 1989 Aug 14; 19(4):404-11. PubMed ID: 2550242 [Abstract] [Full Text] [Related]
16. NADPH-binding component of the superoxide-generating oxidase in unstimulated neutrophils and the neutrophils from the patients with chronic granulomatous disease. Umei T, Takeshige K, Minakami S. Biochem J; 1987 Apr 15; 243(2):467-72. PubMed ID: 3632631 [Abstract] [Full Text] [Related]
17. Enhanced activation of the respiratory burst oxidase in neutrophils from hypertensive patients. Pontremoli S, Salamino F, Sparatore B, De Tullio R, Patrone M, Tizianello A, Melloni E. Biochem Biophys Res Commun; 1989 Feb 15; 158(3):966-72. PubMed ID: 2537641 [Abstract] [Full Text] [Related]
18. Cell-surface NAD(P)H-oxidase: relationship to trans-plasma membrane NADH-oxidoreductase and a potential source of circulating NADH-oxidase. Berridge MV, Tan AS. Antioxid Redox Signal; 2000 Feb 15; 2(2):277-88. PubMed ID: 11229532 [Abstract] [Full Text] [Related]
19. Activation of the human neutrophil superoxide-generating oxidase: studies in a reconstituted subcellular system. Clark RA, Volpp BD, Nauseef WM. Trans Am Clin Climatol Assoc; 1989 Feb 15; 100():100-6. PubMed ID: 2855868 [No Abstract] [Full Text] [Related]
20. Inhibition by suramin of the NADPH oxidase from horse polymorphonuclear leukocytes. Heyneman RA. Vet Res Commun; 1987 Feb 15; 11(2):149-57. PubMed ID: 3035782 [Abstract] [Full Text] [Related] Page: [Next] [New Search]