These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Membrane changes induced by high electric fields evidence for sulfhydryl group involvement. Ben-Sasson SA, Naaman J, Grover NB. Anal Quant Cytol; 1982 Dec; 4(4):309-14. PubMed ID: 6299150 [No Abstract] [Full Text] [Related]
3. Penetration and entrapment of large particles in erythrocytes by electrical breakdown techniques. Vienken J, Jeltsch E, Zimmermann U. Cytobiologie; 1978 Jun; 17(1):182-96. PubMed ID: 689250 [Abstract] [Full Text] [Related]
5. A plasma membrane without much of a cell. Reports from the 3rd meeting of the European Red Cell Club. Bull Schweiz Akad Med Wiss; 1978 Jun; ():247-60. PubMed ID: 6307447 [No Abstract] [Full Text] [Related]
6. Ion channels: from conductance to structure. Bezanilla F. Neuron; 2008 Nov 06; 60(3):456-68. PubMed ID: 18995820 [Abstract] [Full Text] [Related]
7. Formation and properties of aqueous leaks induced in human erythrocytes by electrical breakdown. Schwister K, Deuticke B. Biochim Biophys Acta; 1985 Jun 27; 816(2):332-48. PubMed ID: 4005247 [Abstract] [Full Text] [Related]
8. [Regulation of human erythrocyte volume. The role of calcium channels activated by calcium]. Ataullakhanov FI, Vitvitskiy VM, Kiiatkin AB, Pichugin AV. Biofizika; 1993 Jun 27; 38(5):809-21. PubMed ID: 8241312 [Abstract] [Full Text] [Related]
10. Patch-clamp analysis of the "new permeability pathways" in malaria-infected erythrocytes. Huber SM, Duranton C, Lang F. Int Rev Cytol; 2005 Jun 27; 246():59-134. PubMed ID: 16164967 [Abstract] [Full Text] [Related]
11. Some effects of electrical fields on red blood cells with remarks on electronic red cell sizing. Ur A, Lushbaugh CC. Br J Haematol; 1968 Dec 27; 15(6):527-38. PubMed ID: 5710060 [No Abstract] [Full Text] [Related]
13. A generalized ionic model of the neuronal membrane electrical activity. Bernardi P, D'Inzeo G, Pisa S. IEEE Trans Biomed Eng; 1994 Feb 27; 41(2):125-33. PubMed ID: 7517913 [Abstract] [Full Text] [Related]
14. [Effect of unconjugated bilirubin on the ionic content and sensitivity to hyposmotic hemolysis in erythrocytes]. Gioia IA, Serrani RE, Corchs JL. Medicina (B Aires); 1984 Feb 27; 44(4):392-6. PubMed ID: 6544363 [No Abstract] [Full Text] [Related]
15. Transmembrane Na/K exchanges under electromagnetic fields. Preliminary study on human erythrocytes. Hinsenkamp M, Lheureux P, Martins D. Reconstr Surg Traumatol; 1985 Feb 27; 19():63-9. PubMed ID: 2581292 [No Abstract] [Full Text] [Related]
16. Erythrocyte parameters during induced CA-2+-dependent rapid K+-efflux: optimum conditions for kinetic analysis. Szász I, Sarkadi B, Gárdos G. Haematologia (Budap); 1974 Feb 27; 8(1-4):143-51. PubMed ID: 4618229 [No Abstract] [Full Text] [Related]
17. Erythrocyte osmotic fragility: micromethod based on resistive-particle counting. Gear AR. J Lab Clin Med; 1977 Nov 27; 90(5):914-28. PubMed ID: 908878 [Abstract] [Full Text] [Related]
18. [Electrical breakdown of erythrocyte membranes attributed to the diffusion potential difference]. Putvinskiĭ AV, Popov SA, Puchkova TV, Danilov IuA, Vladimirov IuA. Biofizika; 1983 Nov 27; 28(3):505-6. PubMed ID: 6871275 [Abstract] [Full Text] [Related]
19. Effect of the shape of human erythrocytes on the evaluation of the passive electrical properties of the cell membrane. Di Biasio A, Cametti C. Bioelectrochemistry; 2005 Feb 27; 65(2):163-9. PubMed ID: 15713568 [Abstract] [Full Text] [Related]
20. Electrical sizing of particles in suspensions. IV. Lymphocytes. Ben-Sasson S, Patinkin D, Grover NB, Doljanski F. J Cell Physiol; 1974 Oct 27; 84(2):205-14. PubMed ID: 4612053 [No Abstract] [Full Text] [Related] Page: [Next] [New Search]