These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
185 related items for PubMed ID: 6301163
1. On the significance of the cytochrome P-450-dependent hydroxyl radical-mediated oxygenation mechanism. Ingelman-Sundberg M, Hagbjörk AL. Xenobiotica; 1982 Nov; 12(11):673-86. PubMed ID: 6301163 [Abstract] [Full Text] [Related]
2. Hydroxyl radical-mediated, cytochrome P-450-dependent metabolic activation of benzene in microsomes and reconstituted enzyme systems from rabbit liver. Johansson I, Ingelman-Sundberg M. J Biol Chem; 1983 Jun 25; 258(12):7311-6. PubMed ID: 6305935 [Abstract] [Full Text] [Related]
3. Evaluation of the role of free hydroxyl radicals in the cytochrome P-450-catalyzed oxidation of benzene and cyclohexanol. Gorsky LD, Coon MJ. Drug Metab Dispos; 1985 Jun 25; 13(2):169-74. PubMed ID: 2859164 [Abstract] [Full Text] [Related]
4. Mechanisms of hydroxyl radical formation and ethanol oxidation by ethanol-inducible and other forms of rabbit liver microsomal cytochromes P-450. Ingelman-Sundberg M, Johansson I. J Biol Chem; 1984 May 25; 259(10):6447-58. PubMed ID: 6327680 [Abstract] [Full Text] [Related]
5. NADPH-dependent production of oxy radicals by purified components of the rat liver mixed function oxidase system. I. Oxidation of hydroxyl radical scavenging agents. Winston GW, Cederbaum AI. J Biol Chem; 1983 Feb 10; 258(3):1508-13. PubMed ID: 6296101 [Abstract] [Full Text] [Related]
6. Evidence for two ethanol oxidizing pathways in reconstituted mixed-function oxidase systems. Winston GW, Cederbaum AI. Pharmacol Biochem Behav; 1983 Feb 10; 18 Suppl 1():189-94. PubMed ID: 6314373 [Abstract] [Full Text] [Related]
7. The mechanism of cytochrome P-450-dependent oxidation of ethanol in reconstituted membrane vesicles. Ingelman-Sundberg M, Johansson I. J Biol Chem; 1981 Jun 25; 256(12):6321-6. PubMed ID: 6787051 [Abstract] [Full Text] [Related]
8. Characterization of hydroxyl radical formation by microsomal enzymes using a water-soluble trap, terephthalate. Mishin VM, Thomas PE. Biochem Pharmacol; 2004 Aug 15; 68(4):747-52. PubMed ID: 15276082 [Abstract] [Full Text] [Related]
9. Role of superoxide and trace transition metals in the production of alpha-hydroxyethyl radical from ethanol by microsomes from alcohol dehydrogenase-deficient deermice. Knecht KT, Thurman RG, Mason RP. Arch Biochem Biophys; 1993 Jun 15; 303(2):339-48. PubMed ID: 8390220 [Abstract] [Full Text] [Related]
10. [Free oxygen radiacals and kidney diseases--part I]. Sakac V, Sakac M. Med Pregl; 2000 Jun 15; 53(9-10):463-74. PubMed ID: 11320727 [Abstract] [Full Text] [Related]
11. Hydroxy radical as autotoxin in chemotactically activated neutrophils. Till GO, Lutz MJ, Ward PA. Biomed Pharmacother; 1987 Jun 15; 41(6):349-54. PubMed ID: 2833323 [Abstract] [Full Text] [Related]
12. Hydroxyl-radical production and ethanol oxidation by liver microsomes isolated from ethanol-treated rats. Ekström G, Cronholm T, Ingelman-Sundberg M. Biochem J; 1986 Feb 01; 233(3):755-61. PubMed ID: 3085654 [Abstract] [Full Text] [Related]
13. Increased microsomal oxidation of ethanol by cytochrome P-450 and hydroxyl radical-dependent pathways after chronic ethanol consumption. Krikun G, Lieber CS, Cederbaum AI. Biochem Pharmacol; 1984 Oct 15; 33(20):3306-9. PubMed ID: 6091674 [No Abstract] [Full Text] [Related]
14. Increased production of reactive oxygen species by rat liver mitochondria after chronic ethanol treatment. Kukiełka E, Dicker E, Cederbaum AI. Arch Biochem Biophys; 1994 Mar 15; 309(2):377-86. PubMed ID: 8135551 [Abstract] [Full Text] [Related]
15. 1-Hydroxyethyl radical formation during NADPH- and NADH-dependent oxidation of ethanol by human liver microsomes. Rao DN, Yang MX, Lasker JM, Cederbaum AI. Mol Pharmacol; 1996 May 15; 49(5):814-21. PubMed ID: 8622631 [Abstract] [Full Text] [Related]
16. [Oxidation of ethanol by cumene hydroperoxide in the presence of cytochrome P-450 LM2 and hemoglobin]. Pliugacheva EI, Metelitsa DI. Biokhimiia; 1985 Nov 15; 50(11):1884-93. PubMed ID: 4063406 [Abstract] [Full Text] [Related]
17. The mechanism of hydroperoxide-dependent reactions with participation of cytochrome P-450. Metelitza DI, Akhrem AA, Erjomin AN, Kissel MA, Usanov SA. Acta Biol Med Ger; 1979 Nov 15; 38(2-3):511-8. PubMed ID: 517012 [Abstract] [Full Text] [Related]
18. Release of iron from ferritin storage by redox cycling of stilbene and steroid estrogen metabolites: a mechanism of induction of free radical damage by estrogen. Wyllie S, Liehr JG. Arch Biochem Biophys; 1997 Oct 15; 346(2):180-6. PubMed ID: 9343364 [Abstract] [Full Text] [Related]
19. Cytochrome P-450-dependent fragmentation of DNA in reconstituted membranes. Luthman H, Ingelman-Sundberg M. Acta Pharmacol Toxicol (Copenh); 1985 Jan 15; 56(1):69-74. PubMed ID: 3919527 [Abstract] [Full Text] [Related]
20. Damage to the bases in DNA induced by stimulated human neutrophils. Jackson JH, Gajewski E, Schraufstatter IU, Hyslop PA, Fuciarelli AF, Cochrane CG, Dizdaroglu M. J Clin Invest; 1989 Nov 15; 84(5):1644-9. PubMed ID: 2553779 [Abstract] [Full Text] [Related] Page: [Next] [New Search]