These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


155 related items for PubMed ID: 6302364

  • 1. Erythrocyte Na+ and K+ transport systems in children with Bartter syndrome: increase in passive sodium permeability.
    Mongeau JG, Garay R, de Mendonca M, Broyer M, Meyer P.
    Kidney Int; 1983 Mar; 23(3):530-5. PubMed ID: 6302364
    [Abstract] [Full Text] [Related]

  • 2. Correction of hypokalemia corrects the abnormalities in erythrocyte sodium transport in Bartter's syndrome.
    Korff JM, Siebens AW, Gill JR.
    J Clin Invest; 1984 Nov; 74(5):1724-9. PubMed ID: 6501567
    [Abstract] [Full Text] [Related]

  • 3. Abnormalities of erythrocyte sodium transport systems in Bartter's syndrome.
    Sechi LA, Melis A, Bartoli E.
    Am J Nephrol; 1992 Nov; 12(3):137-43. PubMed ID: 1329511
    [Abstract] [Full Text] [Related]

  • 4. Heterogeneous derangement of cellular sodium metabolism in Bartter's syndrome. Description of two cases and review of the literature.
    Sechi LA, Melis A, Faedda R, Tedde R, Bartoli E.
    Panminerva Med; 1992 Nov; 34(2):85-92. PubMed ID: 1408334
    [Abstract] [Full Text] [Related]

  • 5. Evidence for imbalanced furosemide-sensitive Na+, K+ cotransport in hereditary stomatocytosis.
    Chailley B, Feo C, Garay R, Dagher G, Bruckdorfer R, Fischer S, Piau JP, Delaunay J.
    Scand J Haematol; 1981 Nov; 27(5):365-73. PubMed ID: 7346999
    [Abstract] [Full Text] [Related]

  • 6. Effect of ouabain and furosemide on erythrocyte sodium and phosphate transport.
    Walter U.
    Clin Pharmacol Ther; 1981 Dec; 30(6):709-17. PubMed ID: 6273055
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Increased inward passive permeability in vitro to sodium in uraemic erythrocytes.
    Corry DB, Ellis CC, Tuck ML.
    Clin Sci (Lond); 1996 Jan; 90(1):3-8. PubMed ID: 8697702
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Sodium transport parameters in erythrocytes of patients with primary aldosteronism.
    Smith JB, Wade MB, Fineberg NS, Weinberger MH.
    Hypertension; 1988 Feb; 11(2):141-6. PubMed ID: 2449394
    [Abstract] [Full Text] [Related]

  • 14. Erythrocyte cationic transport systems in normal male and female volunteers.
    Lijnen P, M'Buyamba-Kabangu JR, Lissens W, Amery A.
    Methods Find Exp Clin Pharmacol; 1985 Jan; 7(1):35-40. PubMed ID: 2985891
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Intracellular sodium, potassium and magnesium concentration, ouabain-sensitive 86rubidium-uptake and sodium-efflux and Na+, K+-cotransport activity in erythrocytes of normal male subjects studied on two occasions.
    Lijnen P, Hespel P, Lommelen G, Laermans M, M'Buyamba-Kabangu JR, Amery A.
    Methods Find Exp Clin Pharmacol; 1986 Sep; 8(9):525-33. PubMed ID: 3773597
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Temperature adaptation of active sodium-potassium transport and of passive permeability in erythrocytes of ground squirrels.
    Kimzey SL, Willis JS.
    J Gen Physiol; 1971 Dec; 58(6):634-49. PubMed ID: 5120391
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.