These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


171 related items for PubMed ID: 6310288

  • 1. Activation of adenylate cyclase by beta-adrenergic receptors: investigation of rate limiting steps by simultaneous assay of high affinity agonist binding and GDP release.
    De Lean A, Rouleau D, Lefkowitz RJ.
    Life Sci; 1983 Sep 05; 33(10):943-54. PubMed ID: 6310288
    [Abstract] [Full Text] [Related]

  • 2. Slow GDP dissociation from the guanyl nucleotide site of turkey erythrocyte membranes is not the rate limiting step in the activation of adenylate cylase by beta-adrenergic receptors.
    Levitzki A.
    FEBS Lett; 1980 Jun 16; 115(1):9-10. PubMed ID: 6248377
    [No Abstract] [Full Text] [Related]

  • 3. Slow GDP dissociation from the guanyl nucleotide-binding site of turkey erythrocyte membranes as the limiting step in the activation of adenylate cyclase by beta-adrenergic agonists.
    Swillens S, Juvent M, Dumont JE.
    FEBS Lett; 1979 Dec 15; 108(2):365-8. PubMed ID: 230088
    [No Abstract] [Full Text] [Related]

  • 4. Correlation of beta-adrenergic receptor-stimulated [3H]GDP release and adenylate cyclase activation. Differences between frog and turkey erythrocyte membranes.
    Pike LJ, Lefkowitz RJ.
    J Biol Chem; 1981 Mar 10; 256(5):2207-12. PubMed ID: 6257708
    [No Abstract] [Full Text] [Related]

  • 5. The role of the guanine nucleotide exchange reaction in the regulation of the beta-adrenergic receptor and in the actions of catecholamines and cholera toxin on adenylate cyclase in turkey erythrocyte membranes.
    Lad PM, Nielsen TB, Preston MS, Rodbell M.
    J Biol Chem; 1980 Feb 10; 255(3):988-95. PubMed ID: 6243304
    [Abstract] [Full Text] [Related]

  • 6. Biochemical characterization of the beta-adrenergic receptor of the frog erythrocyte.
    Caron MG, Limbird LE, Lefkowitz RJ.
    Mol Cell Biochem; 1979 Dec 14; 28(1-3):45-66. PubMed ID: 231201
    [Abstract] [Full Text] [Related]

  • 7. Differential effects of cholera toxin on guanine nucleotide regulation of beta-adrenergic agonist high affinity binding and adenylate cyclase activation in frog erythrocyte membranes.
    Stadel JM, Lefkowitz RJ.
    J Cyclic Nucleotide Res; 1981 Dec 14; 7(6):363-74. PubMed ID: 6125532
    [Abstract] [Full Text] [Related]

  • 8. GDP activates rabbit heart adenylate cyclase, but does not support stimulation by isoproterenol: a re-appraisal of the control mechanism.
    Harding SE, Harris P.
    J Mol Cell Cardiol; 1986 Aug 14; 18(8):793-806. PubMed ID: 3018266
    [Abstract] [Full Text] [Related]

  • 9. Effects of local anesthetics on guanyl nucleotide modulation of the catecholamine-sensitive adenylate cyclase system and on beta-adrenergic receptors.
    Voeikov VL, Lefkowitz RJ.
    Biochim Biophys Acta; 1980 May 07; 629(2):266-81. PubMed ID: 6248119
    [Abstract] [Full Text] [Related]

  • 10. Evidence that a beta-adrenergic receptor-associated guanine nucleotide regulatory protein conveys guanosine 5'-O-(3-thiotriphosphate)- dependent adenylate cyclase activity.
    Stadel JM, Shorr RG, Limbird LE, Lefkowitz RJ.
    J Biol Chem; 1981 Aug 25; 256(16):8718-23. PubMed ID: 6267049
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. On the mode of action of catecholamines on the turkey erythrocyte adenylyl cyclase. Evaluation of basic activity states after removal of endogenous GDP and interpretation of nucleotide regulation and hormone activation in terms of a two-state model.
    Abramowitz J, Iyengar R, Birnbaumer L.
    J Biol Chem; 1980 Sep 10; 255(17):8259-65. PubMed ID: 7410362
    [No Abstract] [Full Text] [Related]

  • 15. Enhanced adenylate cyclase activity of turkey erythrocytes following treatment with beta-adrenergic receptor antagonists.
    Peters JR, Nambi P, Sibley DR, Lefkowitz RJ.
    Eur J Pharmacol; 1984 Dec 15; 107(1):43-52. PubMed ID: 6151904
    [Abstract] [Full Text] [Related]

  • 16. Mechanism of adenylate cyclase activation through the beta-adrenergic receptor: catecholamine-induced displacement of bound GDP by GTP.
    Cassel D, Selinger Z.
    Proc Natl Acad Sci U S A; 1978 Sep 15; 75(9):4155-9. PubMed ID: 212737
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Parallel modulation of catecholamine activation of adenylate cyclase and formation of the high-affinity agonist.receptor complex in turkey erythrocyte membranes by temperature and cis-vaccenic acid.
    Briggs MM, Lefkowitz RJ.
    Biochemistry; 1980 Sep 16; 19(19):4461-6. PubMed ID: 6250586
    [No Abstract] [Full Text] [Related]

  • 19. Allosteric equilibrium model explains steady-state coupling of beta-adrenergic receptors to adenylate cyclase in turkey erythrocyte membranes.
    Ugur O, Onaran HO.
    Biochem J; 1997 May 01; 323 ( Pt 3)(Pt 3):765-76. PubMed ID: 9169611
    [Abstract] [Full Text] [Related]

  • 20. Mode of coupling between the beta-adrenergic receptor and adenylate cyclase in turkey erythrocytes.
    Tolkovsky AM, Levitzki A.
    Biochemistry; 1978 Sep 05; 17(18):3795. PubMed ID: 212105
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.