These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
137 related items for PubMed ID: 6313681
1. Rapid vesicle reconstitution of alprenolol-Sepharose-purified beta 1-adrenergic receptors. Interaction of the purified receptor with N. Kelleher DJ, Rashidbaigi A, Ruoho AE, Johnson GL. J Biol Chem; 1983 Nov 10; 258(21):12881-5. PubMed ID: 6313681 [Abstract] [Full Text] [Related]
2. Reconstitution of a hormone-sensitive adenylate cyclase system. The pure beta-adrenergic receptor and guanine nucleotide regulatory protein confer hormone responsiveness on the resolved catalytic unit. Cerione RA, Sibley DR, Codina J, Benovic JL, Winslow J, Neer EJ, Birnbaumer L, Caron MG, Lefkowitz RJ. J Biol Chem; 1984 Aug 25; 259(16):9979-82. PubMed ID: 6088509 [Abstract] [Full Text] [Related]
3. Isolation of adenylate cyclase-free, beta-adrenergic receptor from turkey erythrocyte membranes by affinity chromatography. Vauquelin G, Geynet P, Hanoune J, Strosberg AD. Proc Natl Acad Sci U S A; 1977 Sep 25; 74(9):3710-4. PubMed ID: 198798 [Abstract] [Full Text] [Related]
4. Affinity chromatography of the beta-adrenergic receptor from turkey erythrocytes. Vauquelin G, Geynet P, Hanoune J, Strosberg AD. Eur J Biochem; 1979 Aug 01; 98(2):543-56. PubMed ID: 226363 [Abstract] [Full Text] [Related]
5. Reconstitution of beta-adrenergic receptor with components of adenylate cyclase. Hekman M, Feder D, Keenan AK, Gal A, Klein HW, Pfeuffer T, Levitzki A, Helmreich EJ. EMBO J; 1984 Dec 20; 3(13):3339-45. PubMed ID: 6098472 [Abstract] [Full Text] [Related]
6. Reconstitution of catecholamine-stimulated guanosinetriphosphatase activity. Brandt DR, Asano T, Pedersen SE, Ross EM. Biochemistry; 1983 Sep 13; 22(19):4357-62. PubMed ID: 6138091 [Abstract] [Full Text] [Related]
7. Reconstitution of beta-adrenergic receptors in lipid vesicles: affinity chromatography-purified receptors confer catecholamine responsiveness on a heterologous adenylate cyclase system. Cerione RA, Strulovici B, Benovic JL, Strader CD, Caron MG, Lefkowitz RJ. Proc Natl Acad Sci U S A; 1983 Aug 13; 80(16):4899-903. PubMed ID: 6308659 [Abstract] [Full Text] [Related]
8. Functional reconstitution of beta-adrenergic receptors and the stimulatory GTP-binding protein of adenylate cyclase. Pedersen SE, Ross EM. Proc Natl Acad Sci U S A; 1982 Dec 13; 79(23):7228-32. PubMed ID: 6296825 [Abstract] [Full Text] [Related]
9. The mammalian beta 2-adrenergic receptor: reconstitution of functional interactions between pure receptor and pure stimulatory nucleotide binding protein of the adenylate cyclase system. Cerione RA, Codina J, Benovic JL, Lefkowitz RJ, Birnbaumer L, Caron MG. Biochemistry; 1984 Sep 25; 23(20):4519-25. PubMed ID: 6149763 [Abstract] [Full Text] [Related]
10. Evidence that a beta-adrenergic receptor-associated guanine nucleotide regulatory protein conveys guanosine 5'-O-(3-thiotriphosphate)- dependent adenylate cyclase activity. Stadel JM, Shorr RG, Limbird LE, Lefkowitz RJ. J Biol Chem; 1981 Aug 25; 256(16):8718-23. PubMed ID: 6267049 [Abstract] [Full Text] [Related]
11. Reconstitution of turkey erythrocyte beta-adrenergic receptors into human erythrocyte acceptor membranes. Demonstration of guanine nucleotide regulation of agonist affinity. Jeffery DR, Charlton RR, Venter JC. J Biol Chem; 1980 Jun 10; 255(11):5015-8. PubMed ID: 6246093 [Abstract] [Full Text] [Related]
12. Visualization of the turkey erythrocyte beta-adrenergic receptor. Durieu-Trautmann O, Delavier-Klutchko C, Vauquelin G, Strosberg AD. J Supramol Struct; 1980 Jun 10; 13(4):411-9. PubMed ID: 6112288 [Abstract] [Full Text] [Related]
13. Fat cell beta-adrenergic receptor in the hypothyroid rat. Impaired interaction with the stimulatory regulatory component of adenylate cyclase. Malbon CC, Graziano MP, Johnson GL. J Biol Chem; 1984 Mar 10; 259(5):3254-60. PubMed ID: 6321502 [Abstract] [Full Text] [Related]
14. Specificity of the functional interactions of the beta-adrenergic receptor and rhodopsin with guanine nucleotide regulatory proteins reconstituted in phospholipid vesicles. Cerione RA, Staniszewski C, Benovic JL, Lefkowitz RJ, Caron MG, Gierschik P, Somers R, Spiegel AM, Codina J, Birnbaumer L. J Biol Chem; 1985 Feb 10; 260(3):1493-500. PubMed ID: 2981858 [Abstract] [Full Text] [Related]
15. A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor. De Lean A, Stadel JM, Lefkowitz RJ. J Biol Chem; 1980 Aug 10; 255(15):7108-17. PubMed ID: 6248546 [Abstract] [Full Text] [Related]
16. Identification of adenylate cyclase-coupled beta-adrenergic receptors in frog erythrocytes with (minus)-[3-H] alprenolol. Mukherjee C, Caron MG, Coverstone M, Lefkowitz RJ. J Biol Chem; 1975 Jul 10; 250(13):4869-76. PubMed ID: 238972 [Abstract] [Full Text] [Related]
17. Distinctions in beta-adrenergic receptor interactions with the magnesium-guanine nucleotide coupling proteins in turkey erythrocyte and S49 lymphoma membranes. Vauquelin G, Cech SY, André C, Strosberg AD, Maguire ME. J Cyclic Nucleotide Res; 1982 Jul 10; 8(3):149-62. PubMed ID: 6300206 [Abstract] [Full Text] [Related]
18. Biochemical characterization of the beta-adrenergic receptor of the frog erythrocyte. Caron MG, Limbird LE, Lefkowitz RJ. Mol Cell Biochem; 1979 Dec 14; 28(1-3):45-66. PubMed ID: 231201 [Abstract] [Full Text] [Related]
19. The beta-adrenergic receptor survives solubilization in deoxycholate while forming a stable association with the agonist. Nedivi E, Schramm M. J Biol Chem; 1984 May 10; 259(9):5803-8. PubMed ID: 6325449 [Abstract] [Full Text] [Related]
20. Formation of complexes between avidin and beta-adrenergic receptors using biotinyl-alprenolol derivatives. Meier KE, Ruoho AE. Biochim Biophys Acta; 1983 Dec 27; 761(3):257-61. PubMed ID: 6317049 [Abstract] [Full Text] [Related] Page: [Next] [New Search]