These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
474 related items for PubMed ID: 6315431
1. Interaction between photoexcited rhodopsin and peripheral enzymes in frog retinal rods. Influence on the postmetarhodopsin II decay and phosphorylation rate of rhodopsin. Pfister C, Kühn H, Chabre M. Eur J Biochem; 1983 Nov 15; 136(3):489-99. PubMed ID: 6315431 [Abstract] [Full Text] [Related]
2. Interactions between photoexcited rhodopsin and GTP-binding protein: kinetic and stoichiometric analyses from light-scattering changes. Kühn H, Bennett N, Michel-Villaz M, Chabre M. Proc Natl Acad Sci U S A; 1981 Nov 15; 78(11):6873-7. PubMed ID: 6273893 [Abstract] [Full Text] [Related]
3. The G-protein of retinal rod outer segments (transducin). Mechanism of interaction with rhodopsin and nucleotides. Bennett N, Dupont Y. J Biol Chem; 1985 Apr 10; 260(7):4156-68. PubMed ID: 3920215 [Abstract] [Full Text] [Related]
4. Light-induced interaction between rhodopsin and the GTP-binding protein. Metarhodopsin II is the major photoproduct involved. Bennett N, Michel-Villaz M, Kühn H. Eur J Biochem; 1982 Sep 10; 127(1):97-103. PubMed ID: 6291939 [Abstract] [Full Text] [Related]
5. Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments. Wilden U, Hall SW, Kühn H. Proc Natl Acad Sci U S A; 1986 Mar 10; 83(5):1174-8. PubMed ID: 3006038 [Abstract] [Full Text] [Related]
6. Interplay between hydroxylamine, metarhodopsin II and GTP-binding protein in bovine photoreceptor membranes. Hofmann KP, Emeis D, Schnetkamp PP. Biochim Biophys Acta; 1983 Oct 31; 725(1):60-70. PubMed ID: 6313051 [Abstract] [Full Text] [Related]
7. Complex formation between metarhodopsin II and GTP-binding protein in bovine photoreceptor membranes leads to a shift of the photoproduct equilibrium. Emeis D, Kühn H, Reichert J, Hofmann KP. FEBS Lett; 1982 Jun 21; 143(1):29-34. PubMed ID: 6288450 [No Abstract] [Full Text] [Related]
10. Use of 8-azidoguanosine 5'-[gamma-32P]triphosphate as a probe of the guanosine 5'-triphosphate binding protein subunits in bovine rod outer segments. Kohnken RE, Mc Connell DG. Biochemistry; 1985 Jul 02; 24(14):3803-9. PubMed ID: 3929835 [Abstract] [Full Text] [Related]
14. Photolyzed rhodopsin catalyzes the exchange of GTP for bound GDP in retinal rod outer segments. Kwok-Keung Fung B, Stryer L. Proc Natl Acad Sci U S A; 1980 May 02; 77(5):2500-4. PubMed ID: 6930647 [Abstract] [Full Text] [Related]
15. Phosphorylation of rhodopsin by protein kinase C in vitro. Kelleher DJ, Johnson GL. J Biol Chem; 1986 Apr 05; 261(10):4749-57. PubMed ID: 3007475 [Abstract] [Full Text] [Related]
16. The transitory complex between photoexcited rhodopsin and transducin. Reciprocal interaction between the retinal site in rhodopsin and the nucleotide site in transducin. Bornancin F, Pfister C, Chabre M. Eur J Biochem; 1989 Oct 01; 184(3):687-98. PubMed ID: 2509200 [Abstract] [Full Text] [Related]
17. Role of G-protein-receptor interaction in amplified phosphodiesterase activation of retinal rods. Liebman PA, Sitaramayya A. Adv Cyclic Nucleotide Protein Phosphorylation Res; 1984 Oct 01; 17():215-25. PubMed ID: 6328918 [No Abstract] [Full Text] [Related]
18. [Guanosine triphosphate complex in rod outer segments of the frog retina]. Orlov NIa, Tishchenkov VG, Bagirov IG, Shnyrov VL. Biofizika; 1983 Oct 01; 28(5):793-9. PubMed ID: 6315073 [Abstract] [Full Text] [Related]