These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
402 related items for PubMed ID: 6315921
1. The influence of the permeant ions thallous and potassium on inward rectification in frog skeletal muscle. Ashcroft FM, Stanfield PR. J Physiol; 1983 Oct; 343():407-28. PubMed ID: 6315921 [Abstract] [Full Text] [Related]
2. Potassium depletion and sodium block of potassium currents under hyperpolarization in frog sartorius muscle. Standen NB, Stanfield PR. J Physiol; 1979 Sep; 294():497-520. PubMed ID: 512954 [Abstract] [Full Text] [Related]
3. Rubidium block and rubidium permeability of the inward rectifier of frog skeletal muscle fibres. Standen NB, Stanfield PR. J Physiol; 1980 Jul; 304():415-35. PubMed ID: 7441543 [Abstract] [Full Text] [Related]
4. A voltage-gated potassium channel in human T lymphocytes. Cahalan MD, Chandy KG, DeCoursey TE, Gupta S. J Physiol; 1985 Jan; 358():197-237. PubMed ID: 2580081 [Abstract] [Full Text] [Related]
5. Gating of a muscle K+ channel and its dependence on the permeating ion species. Stanfield PR, Ashcroft FM, Plant TD. Nature; 1981 Feb 05; 289(5797):509-11. PubMed ID: 6258081 [Abstract] [Full Text] [Related]
6. A potential- and time-dependent blockade of inward rectification in frog skeletal muscle fibres by barium and strontium ions. Standen NB, Stanfield PR. J Physiol; 1978 Jul 05; 280():169-91. PubMed ID: 308537 [Abstract] [Full Text] [Related]
7. The effects of rubidium ions on components of the potassium conductance in the frog node of Ranvier. Plant TD. J Physiol; 1986 Jun 05; 375():81-105. PubMed ID: 2432229 [Abstract] [Full Text] [Related]
8. Inactivation kinetics and steady-state current noise in the anomalous rectifier of tunicate egg cell membranes. Ohmori H. J Physiol; 1978 Aug 05; 281():77-99. PubMed ID: 568176 [Abstract] [Full Text] [Related]
12. Characterization of the inward-rectifying potassium current in cat ventricular myocytes. Harvey RD, Ten Eick RE. J Gen Physiol; 1988 Apr 05; 91(4):593-615. PubMed ID: 2455768 [Abstract] [Full Text] [Related]
15. Voltage-dependent inactivation of inward-rectifying single-channel currents in the guinea-pig heart cell membrane. Sakmann B, Trube G. J Physiol; 1984 Feb 05; 347():659-83. PubMed ID: 6323704 [Abstract] [Full Text] [Related]
16. External [K+] and the block of the K+ inward rectifier by external Cs+ in frog skeletal muscle. Senyk O. Biophys J; 1986 Oct 05; 50(4):677-83. PubMed ID: 2430633 [Abstract] [Full Text] [Related]
18. Fast inward-rectifying current accounts for anomalous rectification in olfactory cortex neurones. Constanti A, Galvan M. J Physiol; 1983 Feb 05; 335():153-78. PubMed ID: 6875873 [Abstract] [Full Text] [Related]
19. The kinetics of recovery and development of potassium channel inactivation in perfused squid (Loligo pealei) giant axons. Chabala LD. J Physiol; 1984 Nov 05; 356():193-220. PubMed ID: 6097669 [Abstract] [Full Text] [Related]
20. The potassium current underlying delayed rectification in cat ventricular muscle. McDonald TF, Trautwein W. J Physiol; 1978 Jan 05; 274():217-46. PubMed ID: 624994 [Abstract] [Full Text] [Related] Page: [Next] [New Search]