These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


138 related items for PubMed ID: 6318905

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Tetanic stimulation increases the frequency of miniature end-plate potentials at the frog neuromuscular junction in Mn2+-, CO2+-, and Ni2+-saline solutions.
    Kita H, Narita K, Van der Kloot W.
    Brain Res; 1981 Jan 26; 205(1):111-21. PubMed ID: 6258705
    [Abstract] [Full Text] [Related]

  • 3. [Tetanic potentiation of miniature end-plate potential frequency at frog neuromuscular junction in manganese solutions].
    Narita K.
    Nihon Seirigaku Zasshi; 1985 Jan 26; 47(12):746-55. PubMed ID: 3007749
    [Abstract] [Full Text] [Related]

  • 4. The thiol-oxidizing agent diamide increases transmitter release by decreasing calcium requirements for neuromuscular transmission in the frog.
    Carlen PL, Kosower EM, Werman R.
    Brain Res; 1976 Nov 26; 117(2):257-76. PubMed ID: 186154
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Time course and magnitude of effects of changes in tonicity on acetylcholine release at frog neuromuscular junction.
    Kita H, van der Kloot W.
    J Neurophysiol; 1977 Mar 26; 40(2):212-24. PubMed ID: 300428
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Mn and Mg influxes through Ca channels of motor nerve terminals are prevented by verapamil in frogs.
    Narita K, Kawasaki F, Kita H.
    Brain Res; 1990 Mar 05; 510(2):289-95. PubMed ID: 2158851
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Dependence of spontaneous release at frog junctions on synaptic strength, external calcium and terminal length.
    Grinnell AD, Pawson PA.
    J Physiol; 1989 Nov 05; 418():397-410. PubMed ID: 2576068
    [Abstract] [Full Text] [Related]

  • 17. Changes in MEPP frequency during depression of evoked release at the frog neuromuscular junction.
    Zengel JE, Sosa MA.
    J Physiol; 1994 Jun 01; 477(Pt 2):267-77. PubMed ID: 7932218
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Mechanism of action of lead on neuromuscular junctions.
    Atchison WD, Narahashi T.
    Neurotoxicology; 1984 Jun 01; 5(3):267-82. PubMed ID: 6097847
    [Abstract] [Full Text] [Related]

  • 20. Effect of alteration of nerve terminal Ca2+ regulation on increased spontaneous quantal release of acetylcholine by methyl mercury.
    Levesque PC, Atchison WD.
    Toxicol Appl Pharmacol; 1988 Jun 15; 94(1):55-65. PubMed ID: 3376114
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.