These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
303 related items for PubMed ID: 6322947
1. An analysis of the metabolism and cell wall composition of Candida albicans during germ-tube formation. Sullivan PA, Yin CY, Molloy C, Templeton MD, Shepherd MG. Can J Microbiol; 1983 Nov; 29(11):1514-25. PubMed ID: 6322947 [Abstract] [Full Text] [Related]
8. Induction of germ tube formation by N-acetyl-D-glucosamine in Candida albicans: uptake of inducer and germinative response. Mattia E, Carruba G, Angiolella L, Cassone A. J Bacteriol; 1982 Nov; 152(2):555-62. PubMed ID: 6752114 [Abstract] [Full Text] [Related]
9. Regulation of chitin synthesis during germ-tube formation in Candida albicans. Chiew YY, Shepherd MG, Sullivan PA. Arch Microbiol; 1980 Mar; 125(1-2):97-104. PubMed ID: 6446267 [Abstract] [Full Text] [Related]
10. Gratuitous induction by N-acetylmannosamine of germ tube formation and enzymes for N-acetylglucosamine utilization in Candida albicans. Sullivan PA, Shepherd MG. J Bacteriol; 1982 Sep; 151(3):1118-22. PubMed ID: 6286591 [Abstract] [Full Text] [Related]
11. Analysis of wall glucans from yeast, hyphal and germ-tube forming cells of Candida albicans. Gopal PK, Shepherd MG, Sullivan PA. J Gen Microbiol; 1984 Dec; 130(12):3295-301. PubMed ID: 6394718 [Abstract] [Full Text] [Related]
12. Enzymes of N-acetylglucosamine metabolism during germ-tube formation in Candida albicans. Gopal P, Sullivan PA, Shepherd MG. J Gen Microbiol; 1982 Oct; 128(10):2319-26. PubMed ID: 6296272 [Abstract] [Full Text] [Related]
13. Magnesium and the regulation of germ-tube formation in Candida albicans. Walker GM, Sullivan PA, Shepherd MG. J Gen Microbiol; 1984 Aug; 130(8):1941-5. PubMed ID: 6432954 [Abstract] [Full Text] [Related]
14. Exo-(1----3)-beta-glucanase, autolysin and trehalase activities during yeast growth and germ-tube formation in Candida albicans. Ram SP, Romana LK, Shepherd MG, Sullivan PA. J Gen Microbiol; 1984 May; 130(5):1227-36. PubMed ID: 6147389 [Abstract] [Full Text] [Related]
15. Effect of glucose starvation on germ-tube production by Candida albicans. Bruatto M, Gremmi M, Nardacchione A, Amerio M. Mycopathologia; 1993 Aug; 123(2):105-10. PubMed ID: 8264767 [Abstract] [Full Text] [Related]
17. Inhibitory effect of glucose and adenosine 3',5'-monophosphate on the synthesis of inducible N-acetylglucosamine catabolic enzymes in yeast. Singh B, Guptaroy B, Hasan G, Datta A. Biochim Biophys Acta; 1980 Oct 15; 632(3):345-53. PubMed ID: 6251914 [Abstract] [Full Text] [Related]
18. A Candida albicans mutant impaired in the utilization of N-acetylglucosamine. Corner BE, Poulter RT, Shepherd MG, Sullivan PA. J Gen Microbiol; 1986 Jan 15; 132(1):15-9. PubMed ID: 3519852 [Abstract] [Full Text] [Related]
19. Antibiotic tetaine--a selective inhibitor of chitin and mannoprotein biosynthesis in Candida albicans. Milewski S, Chmara H, Borowski E. Arch Microbiol; 1986 Aug 15; 145(3):234-40. PubMed ID: 3532988 [Abstract] [Full Text] [Related]
20. Differential profiles of soluble proteins during the initiation of morphogenesis in Candida albicans. Niimi M, Shepherd MG, Monk BC. Arch Microbiol; 1996 Oct 15; 166(4):260-8. PubMed ID: 8824149 [Abstract] [Full Text] [Related] Page: [Next] [New Search]