These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


109 related items for PubMed ID: 6323727

  • 1. Modulation of protein synthesis in a cell-free system derived from rat brain by corticotropin (ACTH), magnesium, and spermine.
    Schrama LH, Edwards PM, Schotman P.
    J Neurosci Res; 1984; 11(1):67-77. PubMed ID: 6323727
    [Abstract] [Full Text] [Related]

  • 2. Modulation of phosphorylation of a 30-kD polyribosomal protein (pp30) by ACTH and spermine: comparison with modulation of brain protein synthesis.
    Schrama LH, Frankena H, Edwards PM, Schotman P.
    J Neurochem; 1984 Dec; 43(6):1693-9. PubMed ID: 6092544
    [Abstract] [Full Text] [Related]

  • 3. Protein synthesis in a cell-free system from rat brain sensitive to ACTH-like peptides.
    Schotman P, von Heuven-Nolsen D, Gispen WH.
    J Neurochem; 1980 Jun; 34(6):1661-70. PubMed ID: 6247450
    [No Abstract] [Full Text] [Related]

  • 4. Inhibitory effect of spermine on ribosomal peptidyltransferase.
    Kalpaxis DL, Drainas D.
    Arch Biochem Biophys; 1993 Feb 01; 300(2):629-34. PubMed ID: 8434942
    [Abstract] [Full Text] [Related]

  • 5. Effect of polyamines on yeast cell-free protein synthesizing system. II. Increase stability of cell-free system in the presence of spermine.
    Jakubowicz T, Wolska-Mitaszko B, Gasior E, Kucharzewska T.
    Acta Microbiol Pol; 1976 Feb 01; 25(3):199-204. PubMed ID: 62495
    [Abstract] [Full Text] [Related]

  • 6. Biphasic modulation by ACTH-like peptides of protein synthesis in a cell-free system from rat brain.
    Schotman P, Allaart J.
    J Neurochem; 1981 Nov 01; 37(5):1349-52. PubMed ID: 6271926
    [Abstract] [Full Text] [Related]

  • 7. Effect of polyamines on cell-free protein synthesizing systems from rat cerebral cortex, cerebellum and liver.
    Goertz B.
    Brain Res; 1979 Sep 07; 173(1):125-35. PubMed ID: 487073
    [Abstract] [Full Text] [Related]

  • 8. Incorporation of [3H] leucine into brain stem protein fractions: the effect of a behaviorally active, N-terminal fragment of ACTH in hypophysectomized rats.
    Reith ME, Schotman P, Gispen WH.
    Neurobiology; 1975 Dec 07; 5(6):355-68. PubMed ID: 174020
    [Abstract] [Full Text] [Related]

  • 9. Cyclic nucleotide- and calcium-independent phosphorylation of proteins in rat brain polyribosome: effects of ACTH, spermine, and hemin.
    Schrama LH, Frankena H, Edwards PM, Schotman P.
    Neurochem Res; 1984 Sep 07; 9(9):1267-81. PubMed ID: 6095130
    [Abstract] [Full Text] [Related]

  • 10. ACTH-like neurotropic peptides: possible regulators of rat brain cyclic AMP.
    Wiegant VM, Dunn AJ, Schotman P, Gispen WH.
    Brain Res; 1979 Jun 08; 168(3):565-84. PubMed ID: 219939
    [Abstract] [Full Text] [Related]

  • 11. Effects of polyamines and calcium and sodium ions on smooth muscle cytoskeleton-associated phosphatidylinositol (4)-phosphate 5-kinase.
    Chen H, Baron CB, Griffiths T, Greeley P, Coburn RF.
    J Cell Physiol; 1998 Oct 08; 177(1):161-73. PubMed ID: 9731756
    [Abstract] [Full Text] [Related]

  • 12. [Effect of adrenocorticotropic hormone on nucleic acid and protein synthesis and content in the brain of rat embryos in the early stages of neurogenesis].
    Kotin AM, Chebotar' NA, Tishchenko LI.
    Ontogenez; 1978 Oct 08; 9(1):70-7. PubMed ID: 203887
    [Abstract] [Full Text] [Related]

  • 13. The influence of stress and ACTH on the protein synthesis in brain.
    Jakoubek B, Semiginovsky E, Dĕdicovã A.
    Act Nerv Super (Praha); 1971 Oct 08; 13(2):140. PubMed ID: 4336005
    [No Abstract] [Full Text] [Related]

  • 14. An aspartate residue in the extracellular loop of the N-methyl-D-aspartate receptor controls sensitivity to spermine and protons.
    Kashiwagi K, Fukuchi J, Chao J, Igarashi K, Williams K.
    Mol Pharmacol; 1996 Jun 08; 49(6):1131-41. PubMed ID: 8649353
    [Abstract] [Full Text] [Related]

  • 15. [Biosynthesis of collagen in a cell-free system from wheat germ on poly(A)-RNA isolated from membrane-bound polyribosomes of chicken embryos].
    Berman AE, Gornaeva NP, Oborotova TA, Mazyrov VI.
    Biokhimiia; 1980 Jan 08; 45(1):63-74. PubMed ID: 7213840
    [Abstract] [Full Text] [Related]

  • 16. In vitro 14C-leucine incorporation into nonsynaptic and synaptic rat brain mitochondria isolated by Ficoll gradients.
    París-Vicente G, López-Pérez MJ, Harvey SA, Clark JB.
    Rev Esp Fisiol; 1983 Dec 08; 39(4):399-407. PubMed ID: 6675092
    [Abstract] [Full Text] [Related]

  • 17. [Structure-function organization of ACTH: fragment ACTH 11-24--a functionally important site of the hormone molecule].
    Skuin'sh AA, Ratkevich MP, Kublis GG, Porunkevich EA, Syskov IV.
    Biokhimiia; 1982 Jul 08; 47(7):1108-12. PubMed ID: 6288123
    [Abstract] [Full Text] [Related]

  • 18. Measurement of free intracellular and transfer RNA amino acid specific activity and protein synthesis in rat brain in vivo.
    Hargreaves-Wall KM, Buciak JL, Pardridge WM.
    J Cereb Blood Flow Metab; 1990 Mar 08; 10(2):162-9. PubMed ID: 2303533
    [Abstract] [Full Text] [Related]

  • 19. Depolarization counteracts glucocorticoid inhibition of adenohypophysical corticotroph cells.
    Lim MC, Shipston MJ, Antoni FA.
    Br J Pharmacol; 1998 Aug 08; 124(8):1735-43. PubMed ID: 9756391
    [Abstract] [Full Text] [Related]

  • 20. ACTH and brain membrane phosphorylation: a model for modulation by neuropeptides.
    Gispen WH.
    Acta Biol Med Ger; 1982 Aug 08; 41(4):279-88. PubMed ID: 6289575
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.