These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


337 related items for PubMed ID: 6325442

  • 21. Characterization of inositol 1,4,5-trisphosphate-stimulated calcium release from rat cerebellar microsomal fractions. Comparison with [3H]inositol 1,4,5-trisphosphate binding.
    Stauderman KA, Harris GD, Lovenberg W.
    Biochem J; 1988 Oct 15; 255(2):677-83. PubMed ID: 3264497
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Mechanisms involved in receptor-mediated changes of intracellular Ca2+ in liver.
    Williamson JR, Hansen CA, Verhoeven A, Coll KE, Johanson R, Williamson MT, Filburn C.
    Soc Gen Physiol Ser; 1987 Oct 15; 42():93-116. PubMed ID: 2850613
    [Abstract] [Full Text] [Related]

  • 25. Ca2+-mediated generation of inositol 1,4,5-triphosphate and inositol 1,3,4,5-tetrakisphosphate in pancreatic islets. Studies with K+, glucose, and carbamylcholine.
    Biden TJ, Peter-Riesch B, Schlegel W, Wollheim CB.
    J Biol Chem; 1987 Mar 15; 262(8):3567-71. PubMed ID: 2981050
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. A role for inositol 1,4,5-trisphosphate in the initiation of agonist-induced contractions of dog tracheal smooth muscle.
    Hashimoto T, Hirata M, Ito Y.
    Br J Pharmacol; 1985 Sep 15; 86(1):191-9. PubMed ID: 3876861
    [Abstract] [Full Text] [Related]

  • 28. Accumulation of inositol polyphosphate isomers in agonist-stimulated cerebral-cortex slices. Comparison with metabolic profiles in cell-free preparations.
    Batty IH, Letcher AJ, Nahorski SR.
    Biochem J; 1989 Feb 15; 258(1):23-32. PubMed ID: 2930510
    [Abstract] [Full Text] [Related]

  • 29. Role of a guanine nucleotide-binding regulatory protein in the hydrolysis of hepatocyte phosphatidylinositol 4,5-bisphosphate by calcium-mobilizing hormones and the control of cell calcium. Studies utilizing aluminum fluoride.
    Blackmore PF, Bocckino SB, Waynick LE, Exton JH.
    J Biol Chem; 1985 Nov 25; 260(27):14477-83. PubMed ID: 2997209
    [Abstract] [Full Text] [Related]

  • 30. Characterization of inositol 1,3,4-trisphosphate phosphorylation in rat liver.
    Hansen CA, vom Dahl S, Huddell B, Williamson JR.
    FEBS Lett; 1988 Aug 15; 236(1):53-6. PubMed ID: 2841169
    [Abstract] [Full Text] [Related]

  • 31. The dephosphorylation pathway of D-myo-inositol 1,3,4,5-tetrakisphosphate in rat brain.
    Erneux C, Delvaux A, Moreau C, Dumont JE.
    Biochem J; 1987 Nov 01; 247(3):635-9. PubMed ID: 2827634
    [Abstract] [Full Text] [Related]

  • 32. Inositol 1,4,5-trisphosphorothioate, a stable analogue of inositol trisphosphate which mobilizes intracellular calcium.
    Taylor CW, Berridge MJ, Cooke AM, Potter BV.
    Biochem J; 1989 May 01; 259(3):645-50. PubMed ID: 2786414
    [Abstract] [Full Text] [Related]

  • 33. [3H]inositol polyphosphate metabolism in muscarinic cholinoceptor-stimulated airways smooth muscle: accumulation of [3H]inositol 4,5 bisphosphate via a lithium-sensitive inositol polyphosphate 1-phosphatase.
    Lynch BJ, Muqit MM, Walker TR, Chilvers ER.
    J Pharmacol Exp Ther; 1997 Feb 01; 280(2):974-82. PubMed ID: 9023314
    [Abstract] [Full Text] [Related]

  • 34. Evidence for phosphatidylinositol hydrolysis in pancreatic islets stimulated with carbamoylcholine. Kinetic analysis of inositol polyphosphate metabolism.
    Biden TJ, Prugue ML, Davison AG.
    Biochem J; 1992 Jul 15; 285 ( Pt 2)(Pt 2):541-9. PubMed ID: 1637344
    [Abstract] [Full Text] [Related]

  • 35. Disruption by lithium of phosphatidylinositol-4,5-bisphosphate supply and inositol-1,4,5-trisphosphate generation in Chinese hamster ovary cells expressing human recombinant m1 muscarinic receptors.
    Jenkinson S, Nahorski SR, Challiss RA.
    Mol Pharmacol; 1994 Dec 15; 46(6):1138-48. PubMed ID: 7808434
    [Abstract] [Full Text] [Related]

  • 36. Second messenger function of inositol 1,4,5-trisphosphate. Early changes in inositol phosphates, cytosolic Ca2+, and insulin release in carbamylcholine-stimulated RINm5F cells.
    Wollheim CB, Biden TJ.
    J Biol Chem; 1986 Jun 25; 261(18):8314-9. PubMed ID: 3522567
    [Abstract] [Full Text] [Related]

  • 37. Characteristics of inositol trisphosphate-mediated Ca2+ release from permeabilized hepatocytes.
    Joseph SK, Williamson JR.
    J Biol Chem; 1986 Nov 05; 261(31):14658-64. PubMed ID: 3490476
    [Abstract] [Full Text] [Related]

  • 38. Luteinizing hormone increases inositol trisphosphate and cytosolic free Ca2+ in isolated bovine luteal cells.
    Davis JS, Weakland LL, Farese RV, West LA.
    J Biol Chem; 1987 Jun 25; 262(18):8515-21. PubMed ID: 3496333
    [Abstract] [Full Text] [Related]

  • 39. Kinetic analysis of A23187-mediated polyphosphoinositide breakdown in rat cortical synaptosomes suggests that inositol bisphosphate does not arise primarily by degradation of inositol trisphosphate.
    Brammer M, Weaver K.
    J Neurochem; 1989 Aug 25; 53(2):399-407. PubMed ID: 2545817
    [Abstract] [Full Text] [Related]

  • 40. Effects of quinacrine on vasopressin-induced changes in glycogen phosphorylase activity, Ca2+ transport and phosphoinositide metabolism in isolated hepatocytes.
    Barritt GJ, Milton SE, Hughes BP.
    Biochem Pharmacol; 1988 Jan 15; 37(2):161-7. PubMed ID: 2829912
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 17.