These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
179 related items for PubMed ID: 6326167
1. New neutron sources for radiotherapy. Bewley DK, Meulders JP, Page BC. Phys Med Biol; 1984 Apr; 29(4):341-9. PubMed ID: 6326167 [Abstract] [Full Text] [Related]
5. Physical characterization of neutron beams produced by protons and deuterons of various energies bombarding beryllium and lithium targets of several thicknesses. Amols HI, Dicello F, Awschalom M, Coulson L, Johnsen SW, Theus RB. Med Phys; 1977 Apr; 4(6):486-93. PubMed ID: 412047 [Abstract] [Full Text] [Related]
7. Summary of high energy neutron sources and their characteristics. Smathers JB, Almond PR, Otte VA, Grant WH. Int J Radiat Oncol Biol Phys; 1977 Apr; 3():149-54. PubMed ID: 96049 [No Abstract] [Full Text] [Related]
10. Microdosimetric investigations on collimated fast-neutron beams for radiation therapy: I. Measurements of microdosimetric spectra and particle dose fractions in a water phantom for fast neutrons from 14 MeV deuterons on beryllium. Fidorra J, Booz J. Phys Med Biol; 1981 Jan; 26(1):27-41. PubMed ID: 6264509 [Abstract] [Full Text] [Related]
11. Measurements of the neutron yields from 7Li(p,n)7Be reaction (thick target) with incident energies from 1.885 to 2.0 MeV. Yu W, Yue G, Han X, Chen J, Tian B. Med Phys; 1998 Jul; 25(7 Pt 1):1222-4. PubMed ID: 9682210 [Abstract] [Full Text] [Related]
17. Thick beryllium target as an epithermal neutron source for neutron capture therapy. Wang CK, Moore BR. Med Phys; 1994 Oct; 21(10):1633-8. PubMed ID: 7869996 [Abstract] [Full Text] [Related]
20. Shielding design for a laser-accelerated proton therapy system. Fan J, Luo W, Fourkal E, Lin T, Li J, Veltchev I, Ma CM. Phys Med Biol; 2007 Jul 07; 52(13):3913-30. PubMed ID: 17664585 [Abstract] [Full Text] [Related] Page: [Next] [New Search]