These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


120 related items for PubMed ID: 6327421

  • 1. Sugar-proton transport systems of Escherichia coli.
    Henderson PJ, Bradley S, Macpherson AJ, Horne P, Davis EO, Daruwalla KR, Jones-Mortimer MC.
    Biochem Soc Trans; 1984 Apr; 12(2):146-8. PubMed ID: 6327421
    [No Abstract] [Full Text] [Related]

  • 2. The variability of kinetic parameters for sugar transport in different mutants of the galactose-H+ symport protein, GalP, of Escherichia coli.
    Henderson PJ, McDonald TP, Steel A, Litherland GJ, Cairns MT, Martin GE.
    Biochem Soc Trans; 1994 Aug; 22(3):643-6. PubMed ID: 7821654
    [No Abstract] [Full Text] [Related]

  • 3. Associative properties of the Escherichia coli galactose binding protein and maltose binding protein.
    Richarme G.
    Biochem Biophys Res Commun; 1982 Mar 30; 105(2):476-81. PubMed ID: 7046749
    [No Abstract] [Full Text] [Related]

  • 4. The mechanism of sugar binding to the periplasmic receptor for galactose chemotaxis and transport in Escherichia coli.
    Miller DM, Olson JS, Quiocho FA.
    J Biol Chem; 1980 Mar 25; 255(6):2465-71. PubMed ID: 6987223
    [No Abstract] [Full Text] [Related]

  • 5. Assay, genetics, proteins, and reconstitution of proton-linked galactose, arabinose, and xylose transport systems of Escherichia coli.
    Henderson PJ, Macpherson AJ.
    Methods Enzymol; 1986 Mar 25; 125():387-429. PubMed ID: 3520228
    [No Abstract] [Full Text] [Related]

  • 6. Mutagenesis of the galactose-H+ symporter, GalP, of Escherichia coli.
    Steel A, Cairns MT, Walmsley AR, Henderson PJ.
    Biochem Soc Trans; 1994 Aug 25; 22(3):277S. PubMed ID: 7821536
    [No Abstract] [Full Text] [Related]

  • 7. L-Arabinose- and D-galactose-binding proteins from Escherichia coli.
    Hogg RW.
    Methods Enzymol; 1982 Aug 25; 90 Pt E():463-7. PubMed ID: 6759865
    [No Abstract] [Full Text] [Related]

  • 8. Export of periplasmic galactose-binding protein in Escherichia coli depends on the chaperone SecB.
    Powers EL, Randall LL.
    J Bacteriol; 1995 Apr 25; 177(7):1906-7. PubMed ID: 7896722
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Associative properties of the Escherichia coli galactose-binding protein and maltose-binding protein.
    Richarme G.
    Biochim Biophys Acta; 1983 Oct 17; 748(1):99-108. PubMed ID: 6351927
    [Abstract] [Full Text] [Related]

  • 11. Purification of the galactose/H+ symport protein of Escherichia coli.
    Dent HC, Henderson PJ, Lucas VA.
    Biochem Soc Trans; 1992 Aug 17; 20(3):251S. PubMed ID: 1426545
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Maltose and lactose transport in Escherichia coli. Examples of two different types of concentrative transport systems.
    Hengge R, Boos W.
    Biochim Biophys Acta; 1983 Aug 11; 737(3-4):443-78. PubMed ID: 6349688
    [No Abstract] [Full Text] [Related]

  • 14. Dependence on pH of substrate binding to lactose carrier in Escherichia coli cytoplasmic membranes.
    Yamato I, Rosenbusch JP.
    FEBS Lett; 1983 Jan 10; 151(1):102-4. PubMed ID: 6297984
    [Abstract] [Full Text] [Related]

  • 15. The interaction of forskolin with the galactose-H+ transport protein (GalP) of Escherichia coli.
    Martin GE, Walmsley AR, Henderson PJ.
    Biochem Soc Trans; 1994 Aug 10; 22(3):278S. PubMed ID: 7821537
    [No Abstract] [Full Text] [Related]

  • 16. Structural prediction of sugar-binding proteins functional in chemotaxis and transport.
    Argos P, Mahoney WC, Hermodson MA, Hanei M.
    J Biol Chem; 1981 May 10; 256(9):4357-61. PubMed ID: 6783660
    [Abstract] [Full Text] [Related]

  • 17. Active transport in membrane vesicles from Escherichia coli: the electrochemical proton gradient alters the distribution of the lac carrier between two different kinetic states.
    Robertson DE, Kaczorowski GJ, Garcia ML, Kaback HR.
    Biochemistry; 1980 Dec 09; 19(25):5692-702. PubMed ID: 7006690
    [No Abstract] [Full Text] [Related]

  • 18. Energy coupling to periplasmic binding protein-dependent transport systems: stoichiometry of ATP hydrolysis during transport in vivo.
    Mimmack ML, Gallagher MP, Pearce SR, Hyde SC, Booth IR, Higgins CF.
    Proc Natl Acad Sci U S A; 1989 Nov 09; 86(21):8257-61. PubMed ID: 2682642
    [Abstract] [Full Text] [Related]

  • 19. Binding-protein-mediated transport systems in Escherichia coli.
    Boos W.
    Biochem Soc Trans; 1984 Apr 09; 12(2):141-6. PubMed ID: 6373428
    [No Abstract] [Full Text] [Related]

  • 20. The role of the periplasmic maltose-binding protein and the outer-membrane phage lambda receptor in maltodextrin transport of Escherichia coli.
    Ferenci T, Brass J, Boos W.
    Biochem Soc Trans; 1980 Dec 09; 8(6):680-1. PubMed ID: 6450701
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.