These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


119 related items for PubMed ID: 6334222

  • 21. Monte Carlo modeling of gamma cameras for I-131 imaging in targeted radiotherapy.
    Autret D, Bitar A, Ferrer L, Lisbona A, Bardiès M.
    Cancer Biother Radiopharm; 2005 Feb; 20(1):77-84. PubMed ID: 15778585
    [Abstract] [Full Text] [Related]

  • 22. Importance of bone attenuation in brain SPECT quantification.
    Stodilka RZ, Kemp BJ, Prato FS, Nicholson RL.
    J Nucl Med; 1998 Jan; 39(1):190-7. PubMed ID: 9443760
    [Abstract] [Full Text] [Related]

  • 23. Correction for attenuation in technetium-99m-HMPAO SPECT brain imaging.
    Kemp BJ, Prato FS, Dean GW, Nicholson RL, Reese L.
    J Nucl Med; 1992 Oct; 33(10):1875-80. PubMed ID: 1403161
    [Abstract] [Full Text] [Related]

  • 24. Calculation and validation of the use of effective attenuation coefficient for attenuation correction in In-111 SPECT.
    Seo Y, Wong KH, Hasegawa BH.
    Med Phys; 2005 Dec; 32(12):3628-35. PubMed ID: 16475761
    [Abstract] [Full Text] [Related]

  • 25. SPECT instrumentation: performance, lesion detection, and recent innovations.
    Heller SL, Goodwin PN.
    Semin Nucl Med; 1987 Jul; 17(3):184-99. PubMed ID: 3303339
    [Abstract] [Full Text] [Related]

  • 26. Evaluation of SPECT quantification of radiopharmaceutical distribution in canine myocardium.
    Li J, Jaszczak RJ, Greer KL, Gilland DR, DeLong DM, Coleman RE.
    J Nucl Med; 1995 Feb; 36(2):278-86. PubMed ID: 7830132
    [Abstract] [Full Text] [Related]

  • 27. Gamma camera energy windows for Tc-99m bone scintigraphy: effect of asymmetry on contrast resolution. Work in progress.
    Collier BD, Palmer DW, Knobel J, Isitman AT, Hellman RS, Zielonka JS.
    Radiology; 1984 May; 151(2):495-7. PubMed ID: 6231657
    [Abstract] [Full Text] [Related]

  • 28. Attenuation correction in cardiac SPECT without a transmission measurement.
    Wallis JW, Miller TR, Koppel P.
    J Nucl Med; 1995 Mar; 36(3):506-12. PubMed ID: 7884518
    [Abstract] [Full Text] [Related]

  • 29. Quantitatively accurate activity measurements with a dedicated cardiac SPECT camera: Physical phantom experiments.
    Pourmoghaddas A, Wells RG.
    Med Phys; 2016 Jan; 43(1):44. PubMed ID: 26745898
    [Abstract] [Full Text] [Related]

  • 30. [Crosstalks onto photopeak windows of 99mTc and other radionuclide (201Tl, 123I or 111In) in simultaneous acquisitions using a scinticamera--a fundamental study through phantom experiments].
    Saegusa K, Fukushi M, Saitoh H, Irifune T.
    Kaku Igaku; 1993 Feb; 30(2):209-16. PubMed ID: 8468806
    [Abstract] [Full Text] [Related]

  • 31. The determination of the effective attenuation coefficient from effective organ depth and modulation transfer function in gamma camera imaging.
    Starck SA, Carlsson S.
    Phys Med Biol; 1997 Oct; 42(10):1957-64. PubMed ID: 9364591
    [Abstract] [Full Text] [Related]

  • 32. Monte Carlo evaluation of Compton scatter subtraction in single photon emission computed tomography.
    Floyd CE, Jaszczak RJ, Harris CC, Greer KL, Coleman RE.
    Med Phys; 1985 Oct; 12(6):776-8. PubMed ID: 3878451
    [Abstract] [Full Text] [Related]

  • 33. Experimental and numerical investigation of the 3D SPECT photon detection kernel for non-uniform attenuating media.
    Riauka TA, Hooper HR, Gortel ZW.
    Phys Med Biol; 1996 Jul; 41(7):1167-89. PubMed ID: 8822783
    [Abstract] [Full Text] [Related]

  • 34. PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients.
    Burger C, Goerres G, Schoenes S, Buck A, Lonn AH, Von Schulthess GK.
    Eur J Nucl Med Mol Imaging; 2002 Jul; 29(7):922-7. PubMed ID: 12111133
    [Abstract] [Full Text] [Related]

  • 35. Characterization of septal penetration in 511 keV SPECT.
    Laymon CM, Turkington TG.
    Nucl Med Commun; 2006 Nov; 27(11):901-9. PubMed ID: 17021431
    [Abstract] [Full Text] [Related]

  • 36. Effects of scatter and attenuation correction on quantitative assessment of regional cerebral blood flow with SPECT.
    Iida H, Narita Y, Kado H, Kashikura A, Sugawara S, Shoji Y, Kinoshita T, Ogawa T, Eberl S.
    J Nucl Med; 1998 Jan; 39(1):181-9. PubMed ID: 9443759
    [Abstract] [Full Text] [Related]

  • 37. Attenuation correction for cardiac dual-head gamma camera coincidence imaging using segmented myocardial perfusion SPECT.
    Fukuchi K, Sago M, Nitta K, Fukushima K, Toba M, Hayashida K, Takamiya M, Ishida Y.
    J Nucl Med; 2000 May; 41(5):919-25. PubMed ID: 10809209
    [Abstract] [Full Text] [Related]

  • 38. Three-window transformation cross-talk correction for simultaneous dual-isotope imaging.
    Knesaurek K, Machac J.
    J Nucl Med; 1997 Dec; 38(12):1992-8. PubMed ID: 9430484
    [Abstract] [Full Text] [Related]

  • 39. Quantitative multi-pinhole small-animal SPECT: uniform versus non-uniform Chang attenuation correction.
    Wu C, de Jong JR, Gratama van Andel HA, van der Have F, Vastenhouw B, Laverman P, Boerman OC, Dierckx RA, Beekman FJ.
    Phys Med Biol; 2011 Sep 21; 56(18):N183-93. PubMed ID: 21865622
    [Abstract] [Full Text] [Related]

  • 40. Enhanced cross-talk correction technique for simultaneous dual-isotope imaging: a TL-201/Tc-99m myocardial perfusion SPECT dog study.
    Knesaurek K, Machac J.
    Med Phys; 1997 Dec 21; 24(12):1914-23. PubMed ID: 9434974
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.