These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
198 related items for PubMed ID: 6342709
21. NG2 positive cells of rat spinal cord activated during experimental autoimmune encephalomyelitis are spatially associated with radially oriented astroglia and express p75 receptor: a role for nerve growth factor in oligodendrocyte progenitor migration? Oderfeld-Nowak B, Zaremba M, Kwiatkowska-Patzer B, Lipkowski AW, Kurkowska-Jastrzebska I, Triaca V, Aloe L. Arch Ital Biol; 2009 Dec; 147(4):105-15. PubMed ID: 20162860 [Abstract] [Full Text] [Related]
22. Astrogliosis in EAE spinal cord: derivation from radial glia, and relationships to oligodendroglia. Bannerman P, Hahn A, Soulika A, Gallo V, Pleasure D. Glia; 2007 Jan 01; 55(1):57-64. PubMed ID: 17009237 [Abstract] [Full Text] [Related]
23. Downregulation of water channel aquaporin-4 in rats with experimental autoimmune encephalomyeritis induced by myelin basic protein. Kaneyama T, Takizawa S, Tsugane S, Yanagisawa S, Takeichi N, Ehara T, Ichikawa M, Koh CS. Cell Immunol; 2013 Jan 01; 281(1):91-9. PubMed ID: 23510922 [Abstract] [Full Text] [Related]
24. Glial fibrillary acidic protein (GFAP) in spinal cord of postnatal rat. An immunoperoxidase study in semithin sections. Bullon MM, Alvarez-Gago T, Fernandez-Ruiz B, Aguirre C. Brain Res; 1984 May 01; 316(1):129-33. PubMed ID: 6375815 [Abstract] [Full Text] [Related]
25. Experimental autoimmune encephalomyelitis in mice lacking glial fibrillary acidic protein is characterized by a more severe clinical course and an infiltrative central nervous system lesion. Liedtke W, Edelmann W, Chiu FC, Kucherlapati R, Raine CS. Am J Pathol; 1998 Jan 01; 152(1):251-9. PubMed ID: 9422542 [Abstract] [Full Text] [Related]
26. GFAP mRNA fluctuates in synchrony with chronic relapsing EAE symptoms in SJL/J mice. Kothavale A, Di Gregorio D, Somera FP, Smith ME. Glia; 1995 Jul 01; 14(3):216-24. PubMed ID: 7591033 [Abstract] [Full Text] [Related]
27. Increase of glial fibrillary acidic protein fragments in the spinal cord of motor neuron degeneration mutant mouse. Fujita K, Yamauchi M, Matsui T, Titani K, Takahashi H, Kato T, Isomura G, Ando M, Nagata Y. Brain Res; 1998 Feb 23; 785(1):31-40. PubMed ID: 9526038 [Abstract] [Full Text] [Related]
28. Pathological findings in rats with experimental allergic encephalomyelitis. Dong M, Liu R, Guo L, Li C, Tan G. APMIS; 2008 Nov 23; 116(11):972-84. PubMed ID: 19132994 [Abstract] [Full Text] [Related]
29. RGC-32 Regulates Generation of Reactive Astrocytes in Experimental Autoimmune Encephalomyelitis. Tatomir A, Beltrand A, Nguyen V, Boodhoo D, Mekala A, Cudrici C, Badea TC, Muresanu DF, Rus V, Rus H. Front Immunol; 2020 Nov 23; 11():608294. PubMed ID: 33569054 [Abstract] [Full Text] [Related]
30. In situ detection of class I and II major histocompatibility complex antigens in the rat central nervous system during experimental allergic encephalomyelitis. An immunohistochemical study. Matsumoto Y, Fujiwara M. J Neuroimmunol; 1986 Oct 23; 12(4):265-77. PubMed ID: 3489735 [Abstract] [Full Text] [Related]
31. Cytoskeletal protein carbonylation and degradation in experimental autoimmune encephalomyelitis. Smerjac SM, Bizzozero OA. J Neurochem; 2008 May 23; 105(3):763-72. PubMed ID: 18088377 [Abstract] [Full Text] [Related]
32. Embryonic intermediate filaments, nestin and vimentin, expression in the spinal cords of rats with experimental autoimmune encephalomyelitis. Shin TK, Lee YD, Sim KB. J Vet Sci; 2003 Apr 23; 4(1):9-13. PubMed ID: 12819359 [Abstract] [Full Text] [Related]
33. Increased phosphorylation of cyclic AMP response element-binding protein in the spinal cord of Lewis rats with experimental autoimmune encephalomyelitis. Kim H, Moon C, Ahn M, Lee Y, Kim S, Matsumoto Y, Koh CS, Kim MD, Shin T. Brain Res; 2007 Aug 08; 1162():113-20. PubMed ID: 17617386 [Abstract] [Full Text] [Related]
34. Increased phosphorylation of caveolin-1 in the spinal cord of Lewis rats with experimental autoimmune encephalomyelitis. Kim H, Ahn M, Lee J, Moon C, Matsumoto Y, Koh CS, Shin T. Neurosci Lett; 2006 Jul 10; 402(1-2):76-80. PubMed ID: 16678345 [Abstract] [Full Text] [Related]
35. The significance of circulating and cell-bound antibodies in experimental allergic encephalomyelitis. Gonatas NK, Gonatas JO, Stieber A, Lisak R, Suzuki K, Martenson RE. Am J Pathol; 1974 Sep 10; 76(3):529-48. PubMed ID: 4547331 [Abstract] [Full Text] [Related]
37. [Expression of glial fibrillary acidic protein in retina of rats in acute experimental autoimmune encephalomyelitis]. Zheng X, Li PH, Song SF. Sichuan Da Xue Xue Bao Yi Xue Ban; 2008 Sep 10; 39(5):719-22. PubMed ID: 19024298 [Abstract] [Full Text] [Related]
38. Heat shock protein 27 upregulation and phosphorylation in rat experimental autoimmune encephalomyelitis. Kim H, Moon C, Ahn M, Byun J, Lee Y, Kim MD, Matsumoto Y, Koh CS, Shin T. Brain Res; 2009 Dec 22; 1304():155-63. PubMed ID: 19781527 [Abstract] [Full Text] [Related]
39. Serotonin immunoreactivity in spinal cord axons and terminals of rodents with experimental allergic encephalomyelitis. White SR, Vyas D, Bieger D. Neuroscience; 1985 Nov 22; 16(3):701-9. PubMed ID: 3912676 [Abstract] [Full Text] [Related]
40. Immunocytochemical study of myelin-associated glycoprotein (MAG) and basic protein (BP) in acute experimental allergic encephalomyelitis (EAE). Itoyama Y, Webster HD. J Neuroimmunol; 1982 Dec 22; 3(4):351-64. PubMed ID: 6184382 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]