These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


168 related items for PubMed ID: 6364985

  • 1. Reversible inactivation of Saccharomyces cerevisiae glutathione reductase under reducing conditions.
    Pinto MC, Mata AM, Lopez-Barea J.
    Arch Biochem Biophys; 1984 Jan; 228(1):1-12. PubMed ID: 6364985
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Redox interconversion of Escherichia coli glutathione reductase. A study with permeabilized and intact cells.
    Mata AM, Pinto MC, López-Barea J.
    Mol Cell Biochem; 1985 Oct; 68(2):121-30. PubMed ID: 3908906
    [Abstract] [Full Text] [Related]

  • 5. The redox interconversion mechanism of Saccharomyces cerevisiae glutathione reductase.
    Pinto MC, Mata AM, López-Barea J.
    Eur J Biochem; 1985 Sep 02; 151(2):275-81. PubMed ID: 3896786
    [Abstract] [Full Text] [Related]

  • 6. Mouse-liver glutathione reductase. Purification, kinetics, and regulation.
    López-Barea J, Lee CY.
    Eur J Biochem; 1979 Aug 01; 98(2):487-99. PubMed ID: 39757
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Reductive inactivation of yeast glutathione reductase by Fe(II) and NADPH.
    Cardoso LA, Ferreira ST, Hermes-Lima M.
    Comp Biochem Physiol A Mol Integr Physiol; 2008 Nov 01; 151(3):313-321. PubMed ID: 17544307
    [Abstract] [Full Text] [Related]

  • 12. Reversible inactivation of recombinant rat liver guanidinoacetate methyltransferase by glutathione disulfide.
    Konishi K, Fujioka M.
    Arch Biochem Biophys; 1991 Aug 15; 289(1):90-6. PubMed ID: 1898065
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. NADPH and oxidized thioredoxin mediate redox interconversion of calf-liver and Escherichia coli thioredoxin reductase.
    Martínez-Galisteo E, García-Alfonso C, Alicia Padilla C, Antonio Bárcena J, López-Barea J.
    Mol Cell Biochem; 1992 Jan 15; 109(1):61-9. PubMed ID: 1319549
    [Abstract] [Full Text] [Related]

  • 15. Isocyanate inactivation of yeast glutathione reductase & its modulation by oxidised glutathione and NADPH.
    Baylor KJ, Heffron JJ.
    Biochem Soc Trans; 1996 May 15; 24(2):325S. PubMed ID: 8736983
    [No Abstract] [Full Text] [Related]

  • 16. Thiol/disulfide exchange between 3-hydroxy-3-methylglutaryl-CoA reductase and glutathione. A thermodynamically facile dithiol oxidation.
    Cappel RE, Gilbert HF.
    J Biol Chem; 1988 Sep 05; 263(25):12204-12. PubMed ID: 3410841
    [Abstract] [Full Text] [Related]

  • 17. Yeast glutathione reductase. Studies of the kinetics and stability of the enzyme as a function of pH and salt concentration.
    Moroff G, Brandt KG.
    Biochim Biophys Acta; 1975 Nov 20; 410(1):21-31. PubMed ID: 74
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Thiram and dimethyldithiocarbamic acid interconversion in Saccharomyces cerevisiae: a possible metabolic pathway under the control of the glutathione redox cycle.
    Elskens MT, Penninckx MJ.
    Appl Environ Microbiol; 1997 Jul 20; 63(7):2857-62. PubMed ID: 9212433
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.