These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


794 related items for PubMed ID: 6373687

  • 21. Adaptations of skeletal muscle mitochondria to exercise training.
    Lundby C, Jacobs RA.
    Exp Physiol; 2016 Jan; 101(1):17-22. PubMed ID: 26440213
    [Abstract] [Full Text] [Related]

  • 22. Progressive effect of endurance training on metabolic adaptations in working skeletal muscle.
    Phillips SM, Green HJ, Tarnopolsky MA, Heigenhauser GJ, Grant SM.
    Am J Physiol; 1996 Feb; 270(2 Pt 1):E265-72. PubMed ID: 8779948
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Adaptation of skeletal muscle to endurance exercise.
    Holloszy JO.
    Med Sci Sports; 1975 Feb; 7(3):155-64. PubMed ID: 173969
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Principles of exercise physiology: responses to acute exercise and long-term adaptations to training.
    Rivera-Brown AM, Frontera WR.
    PM R; 2012 Nov; 4(11):797-804. PubMed ID: 23174541
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Skeletal muscle fat and carbohydrate metabolism during recovery from glycogen-depleting exercise in humans.
    Kimber NE, Heigenhauser GJ, Spriet LL, Dyck DJ.
    J Physiol; 2003 May 01; 548(Pt 3):919-27. PubMed ID: 12651914
    [Abstract] [Full Text] [Related]

  • 31. Changes in peak fat oxidation in response to different doses of endurance training.
    Rosenkilde M, Reichkendler MH, Auerbach P, Bonne TC, Sjödin A, Ploug T, Stallknecht BM.
    Scand J Med Sci Sports; 2015 Feb 01; 25(1):41-52. PubMed ID: 24350597
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Low-volume interval training improves muscle oxidative capacity in sedentary adults.
    Hood MS, Little JP, Tarnopolsky MA, Myslik F, Gibala MJ.
    Med Sci Sports Exerc; 2011 Oct 01; 43(10):1849-56. PubMed ID: 21448086
    [Abstract] [Full Text] [Related]

  • 36. Adaptations of skeletal muscle to prolonged, intense endurance training.
    Hawley JA.
    Clin Exp Pharmacol Physiol; 2002 Mar 01; 29(3):218-22. PubMed ID: 11906487
    [Abstract] [Full Text] [Related]

  • 37. Transfer effects in endurance exercise. Adaptations in trained and untrained muscles.
    Rösler K, Hoppeler H, Conley KE, Claassen H, Gehr P, Howald H.
    Eur J Appl Physiol Occup Physiol; 1985 Mar 01; 54(4):355-62. PubMed ID: 4065122
    [Abstract] [Full Text] [Related]

  • 38. Plasma glucose metabolism during exercise: effect of endurance training in humans.
    Coggan AR.
    Med Sci Sports Exerc; 1997 May 01; 29(5):620-7. PubMed ID: 9140898
    [Abstract] [Full Text] [Related]

  • 39. Transcriptional adaptations of lipid metabolism in tibialis anterior muscle of endurance-trained athletes.
    Schmitt B, Flück M, Décombaz J, Kreis R, Boesch C, Wittwer M, Graber F, Vogt M, Howald H, Hoppeler H.
    Physiol Genomics; 2003 Oct 17; 15(2):148-57. PubMed ID: 14565968
    [Abstract] [Full Text] [Related]

  • 40. Adaptive strategies of respiratory muscles in response to endurance exercise.
    Powers SK, Criswell D.
    Med Sci Sports Exerc; 1996 Sep 17; 28(9):1115-22. PubMed ID: 8882998
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 40.