These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


181 related items for PubMed ID: 6378907

  • 1. Phospholipid-enriched bacterial chromatophores. A system suited to investigate the ubiquinone-mediated interactions of protein complexes in photosynthetic oxidoreduction processes.
    Casadio R, Venturoli G, Di Gioia A, Castellani P, Leonardi L, Melandri BA.
    J Biol Chem; 1984 Jul 25; 259(14):9149-57. PubMed ID: 6378907
    [Abstract] [Full Text] [Related]

  • 2. Structural and functional proteomics of intracytoplasmic membrane assembly in Rhodobacter sphaeroides.
    Woronowicz K, Harrold JW, Kay JM, Niederman RA.
    J Mol Microbiol Biotechnol; 2013 Jul 25; 23(1-2):48-62. PubMed ID: 23615195
    [Abstract] [Full Text] [Related]

  • 3. Lateral diffusion of ubiquinone during electron transfer in phospholipid- and ubiquinone-enriched mitochondrial membranes.
    Schneider H, Lemasters JJ, Hackenbrock CR.
    J Biol Chem; 1982 Sep 25; 257(18):10789-93. PubMed ID: 6286674
    [Abstract] [Full Text] [Related]

  • 4. Electron transport in chromatophores from Rhodopseudomonas sphaeroides GA fused with liposomes.
    Snozzi M, Crofts AR.
    Biochim Biophys Acta; 1984 Aug 31; 766(2):451-63. PubMed ID: 6331848
    [Abstract] [Full Text] [Related]

  • 5. Role of the PufX protein in photosynthetic growth of Rhodobacter sphaeroides. 2. PufX is required for efficient ubiquinone/ubiquinol exchange between the reaction center QB site and the cytochrome bc1 complex.
    Barz WP, Verméglio A, Francia F, Venturoli G, Melandri BA, Oesterhelt D.
    Biochemistry; 1995 Nov 21; 34(46):15248-58. PubMed ID: 7578140
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Reconstruction of photosynthetic, cyclic electron transport system from photoreaction unit, ubiquinone-10 protein, cytochrome c2 and polar lipids purified from Rhodospirillum rubrum.
    Matsuda H, Nishi N, Tsuji K, Tanaka K, Kakuno T, Yamashita J, Horio T.
    J Biochem; 1984 Feb 21; 95(2):431-42. PubMed ID: 6325401
    [Abstract] [Full Text] [Related]

  • 8. Demonstration of a collisional interaction of ubiquinol with the ubiquinol-cytochrome c2 oxidoreductase complex in chromatophores from Rhodobacter sphaeroides.
    Venturoli G, Fernández-Velasco JG, Crofts AR, Melandri BA.
    Biochim Biophys Acta; 1986 Oct 08; 851(3):340-52. PubMed ID: 3019393
    [Abstract] [Full Text] [Related]

  • 9. Lipid-protein associations in chromatophores from the photosynthetic bacterium Rhodopseudomonas sphaeroides.
    Birrell GB, Sistrom WR, Griffith OH.
    Biochemistry; 1978 Sep 05; 17(18):3768-73. PubMed ID: 212104
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Kinetics of photosynthetic electron transfer in artificial vesicles reconstituted with purified complexes from Rhodobacter capsulatus. II. Direct electron transfer between the reaction center and the bc1 complex and role of cytochrome c2.
    Venturoli G, Gabellini N, Oesterhelt D, Melandri BA.
    Eur J Biochem; 1990 Apr 20; 189(1):95-103. PubMed ID: 2158893
    [Abstract] [Full Text] [Related]

  • 12. Functional consequences of the organization of the photosynthetic apparatus in Rhodobacter sphaeroides. I. Quinone domains and excitation transfer in chromatophores and reaction center.antenna complexes.
    Comayras F, Jungas C, Lavergne J.
    J Biol Chem; 2005 Mar 25; 280(12):11203-13. PubMed ID: 15632164
    [Abstract] [Full Text] [Related]

  • 13. Orientation and linear dichroism of the reaction centers from Rhodopseudomonas sphaeroides R-26.
    Abdourakhmanov IA, Ganago AO, Erokhin YE, Solov'ev AA, Chugunov VA.
    Biochim Biophys Acta; 1979 Apr 11; 546(1):183-6. PubMed ID: 312655
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Fast stages of photoelectric processes in biological membranes. III. Bacterial photosynthetic redox system.
    Drachev LA, Semenov AYu, Skulachev VP, Smirnova IA, Chamorovsky SK, Kononenko AA, Rubin AB, Uspenskaya NYa.
    Eur J Biochem; 1981 Jul 11; 117(3):483-9. PubMed ID: 6793358
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Membrane development in purple photosynthetic bacteria in response to alterations in light intensity and oxygen tension.
    Niederman RA.
    Photosynth Res; 2013 Oct 11; 116(2-3):333-48. PubMed ID: 23708977
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.