These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


162 related items for PubMed ID: 6395864

  • 21. The mechanism of Klebsiella pneumoniae nitrogenase action. Pre-steady-state kinetics of an enzyme-bound intermediate in N2 reduction and of NH3 formation.
    Thorneley RN, Lowe DJ.
    Biochem J; 1984 Dec 15; 224(3):887-94. PubMed ID: 6395862
    [Abstract] [Full Text] [Related]

  • 22. Isotopic hybrids of nitrogenase. Mössbauer study of MoFe protein with selective 57Fe enrichment of the P-cluster.
    McLean PA, Papaefthymiou V, Orme-Johnson WH, Münck E.
    J Biol Chem; 1987 Sep 25; 262(27):12900-3. PubMed ID: 2820958
    [Abstract] [Full Text] [Related]

  • 23. The vanadium- and molybdenum-containing nitrogenases of Azotobacter chroococcum. Comparison of mid-point potentials and kinetics of reduction by sodium dithionite of the iron proteins with bound magnesium adenosine 5'-diphosphate.
    Bergström J, Eady RR, Thorneley RN.
    Biochem J; 1988 Apr 01; 251(1):165-9. PubMed ID: 3164616
    [Abstract] [Full Text] [Related]

  • 24. H2-uptake activity of the MoFe protein component of Azotobacter vinelandii nitrogenase.
    Wang ZC, Watt GD.
    Proc Natl Acad Sci U S A; 1984 Jan 01; 81(2):376-9. PubMed ID: 6320185
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Energetics of biological nitrogen fixation: determination of the ratio of formation of H2 to NH4+ catalysed by nitrogenase of Klebsiella pneumoniae in vivo.
    Andersen K, Shanmugam KT.
    J Gen Microbiol; 1977 Nov 01; 103(1):107-22. PubMed ID: 22579
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. Nitrogenase of Klebsiella pneumoniae. Distinction between proton-reducing and acetylene-reducing forms of the enzyme: effect of temperature and component protein ratio on substrate-reduction kinetics.
    Thorneley RN, Eady RR.
    Biochem J; 1977 Nov 01; 167(2):457-61. PubMed ID: 339912
    [Abstract] [Full Text] [Related]

  • 30. Evidence on intramolecular electron transfer in the MoFe protein of nitrogenase from Klebsiella pneumoniae from rapid-freeze electron-paramagnetic-resonance studies of its oxidation by ferricyanide.
    Smith BE, Lowe DJ, Chen GX, O'Donnell MJ, Hawkes TR.
    Biochem J; 1983 Jan 01; 209(1):207-13. PubMed ID: 6303301
    [Abstract] [Full Text] [Related]

  • 31. Effect of high pN2 and high pD2 on NH3 production, H2 evolution, and HD formation by nitrogenases.
    Jensen BB, Burris RH.
    Biochemistry; 1985 Feb 26; 24(5):1141-7. PubMed ID: 3913463
    [Abstract] [Full Text] [Related]

  • 32. On the nature of anaerobic oxidative damage to the Mo-Fe protein of Klebsiella pneumoniae nitrogenase.
    O'Donnell MJ, Smith BE.
    FEBS Lett; 1980 Nov 03; 120(2):251-4. PubMed ID: 7002616
    [No Abstract] [Full Text] [Related]

  • 33. Nitrogenase from Klebsiella pneumoniae. An e.p.r. signal observed during enzyme turnover under ethylene is associated with the iron-molybdenum cofactor.
    Hawkes TR, Lowe DJ, Smith BE.
    Biochem J; 1983 May 01; 211(2):495-7. PubMed ID: 6307282
    [Abstract] [Full Text] [Related]

  • 34. Duplication and extension of the Thorneley and Lowe kinetic model for Klebsiella pneumoniae nitrogenase catalysis using a MATHEMATICA software platform.
    Wilson PE, Nyborg AC, Watt GD.
    Biophys Chem; 2001 Jul 24; 91(3):281-304. PubMed ID: 11551440
    [Abstract] [Full Text] [Related]

  • 35. Controlled protonation of iron-molybdenum cofactor by nitrogenase: a structural and theoretical analysis.
    Durrant MC.
    Biochem J; 2001 May 01; 355(Pt 3):569-76. PubMed ID: 11311117
    [Abstract] [Full Text] [Related]

  • 36. Citrate substitutes for homocitrate in nitrogenase of a nifV mutant of Klebsiella pneumoniae.
    Liang J, Madden M, Shah VK, Burris RH.
    Biochemistry; 1990 Sep 18; 29(37):8577-81. PubMed ID: 2271541
    [Abstract] [Full Text] [Related]

  • 37. Nitrogenase of Klebsiella pneumoniae. Reversibility of the reductant-independent MgATP-cleavage reaction is shown by MgADP-catalysed phosphate/water oxygen exchange.
    Thorneley RN, Ashby GA, Julius C, Hunter JL, Webb MR.
    Biochem J; 1991 Aug 01; 277 ( Pt 3)(Pt 3):735-41. PubMed ID: 1872810
    [Abstract] [Full Text] [Related]

  • 38. Klebsiella pneumoniae nitrogenase MoFe protein: chymotryptic proteolysis affects function by limited cleavage of the beta-chain and provides high-specific-activity MoFe protein.
    Fisher K, Lower DJ, Pau RN.
    Biochem J; 1993 Apr 01; 291 ( Pt 1)(Pt 1):309-14. PubMed ID: 8385937
    [Abstract] [Full Text] [Related]

  • 39. Nitrogenase of Klebsiella pneumoniae: reductant-independent ATP hydrolysis and the effect of pH on the efficiency of coupling of ATP hydrolysis to substrate reduction.
    Imam S, Eady RR.
    FEBS Lett; 1980 Jan 28; 110(1):35-8. PubMed ID: 6444386
    [No Abstract] [Full Text] [Related]

  • 40. The inactive MoFe protein (NifB-Kp1) of the nitrogenase from nifB mutants of Klebsiella pneumoniae. Its interaction with FeMo-cofactor and the properties of the active MoFe protein formed.
    Hawkes TR, Smith BE.
    Biochem J; 1984 Nov 01; 223(3):783-92. PubMed ID: 6095809
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.