These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
198 related items for PubMed ID: 6406426
1. Regulation of lactose-phosphoenolpyruvate-dependent phosphotransferase system and beta-D-phosphogalactoside galactohydrolase activities in Lactobacillus casei. Chassy BM, Thompson J. J Bacteriol; 1983 Jun; 154(3):1195-203. PubMed ID: 6406426 [Abstract] [Full Text] [Related]
2. Regulation and characterization of the galactose-phosphoenolpyruvate-dependent phosphotransferase system in Lactobacillus casei. Chassy BM, Thompson J. J Bacteriol; 1983 Jun; 154(3):1204-14. PubMed ID: 6406427 [Abstract] [Full Text] [Related]
5. Involvement of phosphoenolpyruvate in the catabolism of caries-conducive disaccharides by Streptococcus mutans: lactose transport. Calmes R. Infect Immun; 1978 Mar; 19(3):934-42. PubMed ID: 246429 [Abstract] [Full Text] [Related]
6. Nucleotide sequence of the beta-D-phosphogalactoside galactohydrolase gene of Lactobacillus casei: comparison to analogous pbg genes of other gram-positive organisms. Porter EV, Chassy BM. Gene; 1988 Mar; 62(2):263-76. PubMed ID: 3130295 [Abstract] [Full Text] [Related]
7. Elements involved in catabolite repression and substrate induction of the lactose operon in Lactobacillus casei. Gosalbes MJ, Monedero V, Pérez-Martínez G. J Bacteriol; 1999 Jul; 181(13):3928-34. PubMed ID: 10383959 [Abstract] [Full Text] [Related]
8. The lactose operon from Lactobacillus casei is involved in the transport and metabolism of the human milk oligosaccharide core-2 N-acetyllactosamine. Bidart GN, Rodríguez-Díaz J, Pérez-Martínez G, Yebra MJ. Sci Rep; 2018 May 08; 8(1):7152. PubMed ID: 29740087 [Abstract] [Full Text] [Related]
12. Intracellular phosphorylation of glucose analogs via the phosphoenolpyruvate: mannose-phosphotransferase system in Streptococcus lactis. Thompson J, Chassy BM. J Bacteriol; 1985 Apr 08; 162(1):224-34. PubMed ID: 3920204 [Abstract] [Full Text] [Related]
13. Role of the phosphoenolpyruvate-dependent glucose phosphotransferase system of Streptococcus mutans GS5 in the regulation of lactose uptake. Liberman ES, Bleiweis AS. Infect Immun; 1984 Feb 08; 43(2):536-42. PubMed ID: 6420344 [Abstract] [Full Text] [Related]
17. The potential of species-specific tagatose-6-phosphate (T6P) pathway in Lactobacillus casei group for galactose reduction in fermented dairy foods. Wu Q, Shah NP. Food Microbiol; 2017 Apr 08; 62():178-187. PubMed ID: 27889146 [Abstract] [Full Text] [Related]
18. Sugar transport by the bacterial phosphotransferase system. Regulation of other transport systems (lactose and melibiose). Mitchell WJ, Misko TP, Roseman S. J Biol Chem; 1982 Dec 10; 257(23):14553-64. PubMed ID: 6815195 [Abstract] [Full Text] [Related]
19. Plasmid linkage of the D-tagatose 6-phosphate pathway in Streptococcus lactis: effect on lactose and galactose metabolism. Crow VL, Davey GP, Pearce LE, Thomas TD. J Bacteriol; 1983 Jan 10; 153(1):76-83. PubMed ID: 6294064 [Abstract] [Full Text] [Related]