These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
158 related items for PubMed ID: 6407400
1. Influence of valproic acid on hepatic carbohydrate and lipid metabolism. Becker CM, Harris RA. Arch Biochem Biophys; 1983 Jun; 223(2):381-92. PubMed ID: 6407400 [Abstract] [Full Text] [Related]
2. Formation of a free acyl adenylate during the activation of 2-propylpentanoic acid. Valproyl-AMP: a novel cellular metabolite of valproic acid. Mao LF, Millington DS, Schulz H. J Biol Chem; 1992 Feb 15; 267(5):3143-6. PubMed ID: 1737769 [Abstract] [Full Text] [Related]
3. Studies on the extra-mitochondrial CoA -ester formation of valproic and Delta4 -valproic acids. Aires CC, Ruiter JP, Luís PB, ten Brink HJ, Ijlst L, de Almeida IT, Duran M, Wanders RJ, Silva MF. Biochim Biophys Acta; 2007 Apr 15; 1771(4):533-43. PubMed ID: 17321204 [Abstract] [Full Text] [Related]
4. Inhibition of metabolic processes by coenzyme-A-sequestering aromatic acids. Prevention by para-chloro- and para-nitrobenzoic acids. Swartzentruber MS, Harris RA. Biochem Pharmacol; 1987 Oct 01; 36(19):3147-53. PubMed ID: 3117062 [Abstract] [Full Text] [Related]
6. Inhibition of fatty acid oxidation by 2-bromooctanoate. Including effects of bromooctanoate on ketogenesis and gluconeogenesis. Raaka BM, Lowenstein JM. J Biol Chem; 1979 May 10; 254(9):3303-10. PubMed ID: 429351 [No Abstract] [Full Text] [Related]
7. Synthesis and intramitochondrial levels of valproyl-coenzyme A metabolites. Silva MF, Ruiter JP, IJlst L, Allers P, ten Brink HJ, Jakobs C, Duran M, Tavares de Almeida I, Wanders RJ. Anal Biochem; 2001 Mar 01; 290(1):60-7. PubMed ID: 11180937 [Abstract] [Full Text] [Related]
8. The enzymatic basis for the metabolism and inhibitory effects of valproic acid: dehydrogenation of valproyl-CoA by 2-methyl-branched-chain acyl-CoA dehydrogenase. Ito M, Ikeda Y, Arnez JG, Finocchiaro G, Tanaka K. Biochim Biophys Acta; 1990 May 16; 1034(2):213-8. PubMed ID: 2112956 [Abstract] [Full Text] [Related]
9. Valproyl-CoA and esterified valproic acid are not found in brains of rats treated with valproic acid, but the brain concentrations of CoA and acetyl-CoA are altered. Deutsch J, Rapoport SI, Rosenberger TA. Neurochem Res; 2003 Jun 16; 28(6):861-6. PubMed ID: 12718439 [Abstract] [Full Text] [Related]
10. Importance of the modulation of glycolysis in the control of lactate metabolism by fatty acids in isolated hepatocytes from fed rats. Morand C, Besson C, Demigne C, Remesy C. Arch Biochem Biophys; 1994 Mar 16; 309(2):254-60. PubMed ID: 8135535 [Abstract] [Full Text] [Related]
11. CoA esters of valproic acid and related metabolites are oxidized in peroxisomes through a pathway distinct from peroxisomal fatty and bile acyl-CoA beta-oxidation. Vamecq J, Vallee L, Fontaine M, Lambert D, Poupaert J, Nuyts JP. FEBS Lett; 1993 May 10; 322(2):95-100. PubMed ID: 8482393 [Abstract] [Full Text] [Related]
12. Inhibition of hepatic fatty acid oxidation at carnitine palmitoyltransferase I by the peroxisome proliferator 2-hydroxy-3-propyl-4-[6-(tetrazol-5-yl) hexyloxy]acetophenone. Foxworthy PS, Eacho PI. Biochem J; 1988 Jun 01; 252(2):409-14. PubMed ID: 3415664 [Abstract] [Full Text] [Related]
13. Effects of propionate and carnitine on the hepatic oxidation of short- and medium-chain-length fatty acids. Brass EP, Beyerinck RA. Biochem J; 1988 Mar 15; 250(3):819-25. PubMed ID: 3134008 [Abstract] [Full Text] [Related]
14. Troglitazone inhibits fatty acid oxidation and esterification, and gluconeogenesis in isolated hepatocytes from starved rats. Fulgencio JP, Kohl C, Girard J, Pégorier JP. Diabetes; 1996 Nov 15; 45(11):1556-62. PubMed ID: 8866561 [Abstract] [Full Text] [Related]
15. Amelioration of adverse effects of valproic acid on ketogenesis and liver coenzyme A metabolism by cotreatment with pantothenate and carnitine in developing mice: possible clinical significance. Thurston JH, Hauhart RE. Pediatr Res; 1992 Apr 15; 31(4 Pt 1):419-23. PubMed ID: 1570210 [Abstract] [Full Text] [Related]
16. Importance of experimental conditions in evaluating the malonyl-CoA sensitivity of liver carnitine acyltransferase. Studies with fed and starved rats. McGarry JD, Foster DW. Biochem J; 1981 Nov 15; 200(2):217-23. PubMed ID: 7340831 [Abstract] [Full Text] [Related]
17. Effects of sodium 2-[5-(4-chlorophenyl)pentyl]-oxirane-2-carboxylate (POCA) on carbohydrate and fatty acid metabolism in liver and muscle. Schudt C, Simon A. Biochem Pharmacol; 1984 Nov 01; 33(21):3357-62. PubMed ID: 6437406 [Abstract] [Full Text] [Related]
18. Differential effects of acetate on palmitate and octanoate oxidation: segregation of acetyl CoA pools. Cederbaum AI, Rubin E. Arch Biochem Biophys; 1975 Feb 01; 166(2):618-28. PubMed ID: 1119812 [No Abstract] [Full Text] [Related]
19. Valproyl-dephosphoCoA: a novel metabolite of valproate formed in vitro in rat liver mitochondria. Silva MF, Ijlst L, Allers P, Jakobs C, Duran M, de Almeida IT, Wanders RJ. Drug Metab Dispos; 2004 Nov 01; 32(11):1304-10. PubMed ID: 15483197 [Abstract] [Full Text] [Related]
20. Influence of valproic acid on the expression of various acyl-CoA dehydrogenases in rats. Kibayashi M, Nagao M, Chiba S. Pediatr Int; 1999 Feb 01; 41(1):52-60. PubMed ID: 10200137 [Abstract] [Full Text] [Related] Page: [Next] [New Search]