These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
119 related items for PubMed ID: 6411648
1. Aldose reductase activity in retinal and cerebral microvessels and cultured vascular cells. Kennedy A, Frank RN, Varma SD. Invest Ophthalmol Vis Sci; 1983 Sep; 24(9):1250-8. PubMed ID: 6411648 [Abstract] [Full Text] [Related]
2. Polyol formation and NADPH-dependent reductases in dog retinal capillary pericytes and endothelial cells. Sato S, Secchi EF, Lizak MJ, Fukase S, Ohta N, Murata M, Tsai JY, Kador PF. Invest Ophthalmol Vis Sci; 1999 Mar; 40(3):697-704. PubMed ID: 10067973 [Abstract] [Full Text] [Related]
3. Hexitol production by canine retinal microvessels. Kern TS, Engerman RL. Invest Ophthalmol Vis Sci; 1985 Mar; 26(3):382-4. PubMed ID: 3972519 [Abstract] [Full Text] [Related]
10. Differential glucose uptake in retina- and brain-derived endothelial cells. Rajah TT, Olson AL, Grammas P. Microvasc Res; 2001 Nov; 62(3):236-42. PubMed ID: 11678626 [Abstract] [Full Text] [Related]
11. Role of the polyol pathway in high glucose-induced apoptosis of retinal pericytes and proliferation of endothelial cells. Takamura Y, Tomomatsu T, Kubo E, Tsuzuki S, Akagi Y. Invest Ophthalmol Vis Sci; 2008 Jul; 49(7):3216-23. PubMed ID: 18362110 [Abstract] [Full Text] [Related]
12. Polyol formation in cell lines of rat retinal capillary pericytes and endothelial cells (TR-rPCT and TR-iBRB). Kador PF, Randazzo J, Blessing K, Makita J, Zhang P, Yu K, Hosoya K, Terasaki T. J Ocul Pharmacol Ther; 2009 Aug; 25(4):299-308. PubMed ID: 19450153 [Abstract] [Full Text] [Related]
13. Aminoguanidine and the effects of modified LDL on cultured retinal capillary cells. Lyons TJ, Li W, Wojciechowski B, Wells-Knecht MC, Wells-Knecht KJ, Jenkins AJ. Invest Ophthalmol Vis Sci; 2000 Apr; 41(5):1176-80. PubMed ID: 10752957 [Abstract] [Full Text] [Related]
14. Prevention of retinal vessel changes associated with diabetic retinopathy in galactose-fed dogs by aldose reductase inhibitors. Kador PF, Akagi Y, Takahashi Y, Ikebe H, Wyman M, Kinoshita JH. Arch Ophthalmol; 1990 Sep; 108(9):1301-9. PubMed ID: 2119169 [Abstract] [Full Text] [Related]
15. Aldose reductase in human retinal pigment epithelial cells. Sato S, Lin LR, Reddy VN, Kador PF. Exp Eye Res; 1993 Aug; 57(2):235-41. PubMed ID: 8405190 [Abstract] [Full Text] [Related]
16. [Abnormal inositol phospholipid metabolism as a main factor causing pericyte drop-out in diabetic retinopathy]. Li WY. Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 1989 Dec; 11(6):395-401. PubMed ID: 2561475 [Abstract] [Full Text] [Related]
18. Polyol effects on growth factors and MAPK signaling in rat retinal capillary cells. Zhang P, Zhang Z, Kador PF. J Ocul Pharmacol Ther; 2014 Feb; 30(1):4-11. PubMed ID: 24256145 [Abstract] [Full Text] [Related]
19. The effects of glucose and an aldose reductase inhibitor on the sorbitol content and collagen synthesis of bovine retinal capillary pericytes in culture. Li W, Khatami M, Rockey JH. Exp Eye Res; 1985 Mar; 40(3):439-44. PubMed ID: 3933992 [Abstract] [Full Text] [Related]
20. Suppressed expression of tubedown-1 in retinal neovascularization of proliferative diabetic retinopathy. Gendron RL, Good WV, Adams LC, Paradis H. Invest Ophthalmol Vis Sci; 2001 Nov; 42(12):3000-7. PubMed ID: 11687548 [Abstract] [Full Text] [Related] Page: [Next] [New Search]