These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


133 related items for PubMed ID: 6421803

  • 21. Induction of citric acid cycle enzymes during initiation of sporulation by guanine nucleotide deprivation.
    Uratani-Wong B, Lopez JM, Freese E.
    J Bacteriol; 1981 Apr; 146(1):337-44. PubMed ID: 6783618
    [Abstract] [Full Text] [Related]

  • 22. Characterization of growth and acid formation in a Bacillus subtilis pyruvate kinase mutant.
    Fry B, Zhu T, Domach MM, Koepsel RR, Phalakornkule C, Ataai MM.
    Appl Environ Microbiol; 2000 Sep; 66(9):4045-9. PubMed ID: 10966427
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. A target for carbon source-dependent negative regulation of the citB promoter of Bacillus subtilis.
    Fouet A, Sonenshein AL.
    J Bacteriol; 1990 Feb; 172(2):835-44. PubMed ID: 2105305
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. Identification and enzymatic characterization of the maltose-inducible alpha-glucosidase MalL (sucrase-isomaltase-maltase) of Bacillus subtilis.
    Schönert S, Buder T, Dahl MK.
    J Bacteriol; 1998 May; 180(9):2574-8. PubMed ID: 9573215
    [Abstract] [Full Text] [Related]

  • 30. Analysis of the transcriptional activity of the hut promoter in Bacillus subtilis and identification of a cis-acting regulatory region associated with catabolite repression downstream from the site of transcription.
    Oda M, Katagai T, Tomura D, Shoun H, Hoshino T, Furukawa K.
    Mol Microbiol; 1992 Sep; 6(18):2573-82. PubMed ID: 1360137
    [Abstract] [Full Text] [Related]

  • 31. Physiologic consequences of glucose transport and phosphoenolpyruvate node modifications in Bacillus subtilis 168.
    Cabrera-Valladares N, Martínez LM, Flores N, Hernández-Chávez G, Martínez A, Bolívar F, Gosset G.
    J Mol Microbiol Biotechnol; 2012 Sep; 22(3):177-97. PubMed ID: 22846916
    [Abstract] [Full Text] [Related]

  • 32. Regulation of nitrogen catabolic enzymes in Bacillus spp.
    Schreier HJ, Smith TM, Bernlohr RW.
    J Bacteriol; 1982 Aug; 151(2):971-5. PubMed ID: 6124533
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis.
    Weickert MJ, Chambliss GH.
    Proc Natl Acad Sci U S A; 1990 Aug; 87(16):6238-42. PubMed ID: 2117276
    [Abstract] [Full Text] [Related]

  • 35. Regulation of lactate dehydrogenase synthesis in Bacillus subtilis.
    Yashphe J, Hoch JA, Kaplan NO.
    Biochim Biophys Acta; 1978 Nov 15; 544(1):1-7. PubMed ID: 102366
    [Abstract] [Full Text] [Related]

  • 36. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.
    Matsuoka Y, Shimizu K.
    J Biotechnol; 2013 Oct 20; 168(2):155-73. PubMed ID: 23850830
    [Abstract] [Full Text] [Related]

  • 37. Phosphoenolpyruvate:sugar phosphotransferase system of Bacillus subtilis: cloning of the region containing the ptsH and ptsI genes and evidence for a crr-like gene.
    Gonzy-Tréboul G, Steinmetz M.
    J Bacteriol; 1987 May 20; 169(5):2287-90. PubMed ID: 3106335
    [Abstract] [Full Text] [Related]

  • 38. [Relations between catabolite repression and sporulation in Bacillus subtilis (author's transl)].
    López JM, Thoms B.
    Arch Microbiol; 1976 Aug 20; 109(1-2):181-6. PubMed ID: 822795
    [Abstract] [Full Text] [Related]

  • 39. Effect of netropsin on the derepression of enzymes during growth and sporulation of Bacillus subtilis.
    Keilman GR, Brutis K, Tanimoto B, Doi RH.
    J Bacteriol; 1976 Oct 20; 128(1):80-5. PubMed ID: 824280
    [Abstract] [Full Text] [Related]

  • 40. Antitermination by GlpP, catabolite repression via CcpA and inducer exclusion triggered by P-GlpK dephosphorylation control Bacillus subtilis glpFK expression.
    Darbon E, Servant P, Poncet S, Deutscher J.
    Mol Microbiol; 2002 Feb 20; 43(4):1039-52. PubMed ID: 11929549
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.