These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
843 related items for PubMed ID: 6424251
1. The importance of acid-base management for cardiac and cerebral preservation during open heart operations. Swan H. Surg Gynecol Obstet; 1984 Apr; 158(4):391-414. PubMed ID: 6424251 [Abstract] [Full Text] [Related]
2. Comparative analysis of alpha-stat and pH-stat strategies with a membrane oxygenator during deep hypothermic circulatory arrest in young pigs. Kim WG, Lim C, Moon HJ, Kim YJ. Artif Organs; 2000 Nov; 24(11):908-12. PubMed ID: 11119081 [Abstract] [Full Text] [Related]
3. Cerebral physiology in paediatric cardiopulmonary bypass. Pua HL, Bissonnette B. Can J Anaesth; 1998 Oct; 45(10):960-78. PubMed ID: 9836033 [Abstract] [Full Text] [Related]
4. Comparison of pH-stat versus Alpha-stat during hypothermic cardiopulmonary bypass in the prevention and control of acidosis in cardiac surgery. Piccioni MA, Leirner AA, Auler JO. Artif Organs; 2004 Apr; 28(4):347-52. PubMed ID: 15084194 [Abstract] [Full Text] [Related]
5. The effects of deep hypothermic cardiopulmonary bypass and total circulatory arrest on cerebral blood flow in infants and children. Greeley WJ, Ungerleider RM, Smith LR, Reves JG. J Thorac Cardiovasc Surg; 1989 May; 97(5):737-45. PubMed ID: 2709864 [Abstract] [Full Text] [Related]
6. Long-term morphologic and hemodynamic evaluation of the left ventricle after cardiopulmonary bypass. A comparison of normothermic anoxic arrest, coronary artery perfusion, and profound topical cardiac hypothermia. Brody WR, Reitz BA, Andrews MJ, Roberts WC, Michaelis LL. J Thorac Cardiovasc Surg; 1975 Dec; 70(6):1073-87. PubMed ID: 1186284 [Abstract] [Full Text] [Related]
9. A rat model of cardiopulmonary bypass with cardioplegic arrest and hemodynamic assessment by conductance catheter technique. Günzinger R, Wildhirt SM, Schad H, Heimisch W, Gurdan M, Mendler N, Grammer J, Lange R, Bauernschmitt R. Basic Res Cardiol; 2007 Nov; 102(6):508-17. PubMed ID: 17668258 [Abstract] [Full Text] [Related]
10. Brain preservation with selective cerebral perfusion for operations requiring circulatory arrest: protection at 25 degrees C is similar to 18 degrees C with shorter operating times. Salazar J, Coleman R, Griffith S, McNeil J, Young H, Calhoon J, Serrano F, DiGeronimo R. Eur J Cardiothorac Surg; 2009 Sep; 36(3):524-31. PubMed ID: 19481468 [Abstract] [Full Text] [Related]
11. Effects of pH management during deep hypothermic bypass on cerebral microcirculation: alpha-stat versus pH-stat. Duebener LF, Hagino I, Sakamoto T, Mime LB, Stamm C, Zurakowski D, Schäfers HJ, Jonas RA. Circulation; 2002 Sep 24; 106(12 Suppl 1):I103-8. PubMed ID: 12354717 [Abstract] [Full Text] [Related]
12. Deep hypothermic circulatory arrest and global reperfusion injury: avoidance by making a pump prime reperfusate--a new concept. Allen BS, Veluz JS, Buckberg GD, Aeberhard E, Ignarro LJ. J Thorac Cardiovasc Surg; 2003 Mar 24; 125(3):625-32. PubMed ID: 12658205 [Abstract] [Full Text] [Related]
13. Comparison of neurologic outcome after deep hypothermic circulatory arrest with alpha-stat and pH-stat cardiopulmonary bypass in newborn pigs. Priestley MA, Golden JA, O'Hara IB, McCann J, Kurth CD. J Thorac Cardiovasc Surg; 2001 Feb 24; 121(2):336-43. PubMed ID: 11174740 [Abstract] [Full Text] [Related]
14. The effect of maternal hypothermic cardiopulmonary bypass on fetal lamb temperature, hemodynamics, oxygenation, and acid-base balance. Pardi G, Ferrari MM, Iorio F, Acocella F, Boero V, Berlanda N, Monaco A, Reato C, Santoro F, Cetin I. J Thorac Cardiovasc Surg; 2004 Jun 24; 127(6):1728-34. PubMed ID: 15173730 [Abstract] [Full Text] [Related]
15. Brain cooling efficiency with pH-stat and alpha-stat cardiopulmonary bypass in newborn pigs. Kurth CD, O'Rourke MM, O'Hara IB, Uher B. Circulation; 1997 Nov 04; 96(9 Suppl):II-358-63. PubMed ID: 9386124 [Abstract] [Full Text] [Related]
16. Effect of PCO2-adjusted pH on the neonatal heart during hypothermic perfusion and ischemia. Eton D, Billingsley AM, Laks H, Chang P. J Thorac Cardiovasc Surg; 1990 Dec 04; 100(6):902-9. PubMed ID: 2123278 [Abstract] [Full Text] [Related]
17. Intermittent hypothermic asanguineous cerebral perfusion (cerebroplegia) protects the brain during prolonged circulatory arrest. A phosphorus 31 nuclear magnetic resonance study. Robbins RC, Balaban RS, Swain JA. J Thorac Cardiovasc Surg; 1990 May 04; 99(5):878-84. PubMed ID: 2329827 [Abstract] [Full Text] [Related]
18. [Correlation of myocardial temperature, intramyocardial pH, and myocardial electrical activity during hyperkalemic hypothermic cardioplegic arrest to functional recovery after reperfusion]. Matsui Y, Yoshida T, Miyama M, Gohda T, Yasuda K, Tanabe T. Nihon Kyobu Geka Gakkai Zasshi; 1993 Sep 04; 41(9):1452-9. PubMed ID: 8409598 [Abstract] [Full Text] [Related]
19. Blood gas management and degree of cooling: effects on cerebral metabolism before and after circulatory arrest. Skaryak LA, Chai PJ, Kern FH, Greeley WJ, Ungerleider RM. J Thorac Cardiovasc Surg; 1995 Dec 04; 110(6):1649-57. PubMed ID: 8523875 [Abstract] [Full Text] [Related]
20. Time course of ischemic alterations during normothermic and hypothermic arrest and its reflection by on-line monitoring of tissue pH. Lange R, Kloner RA, Zierler M, Carlson N, Seiler M, Khuri SF. J Thorac Cardiovasc Surg; 1983 Sep 04; 86(3):418-34. PubMed ID: 6411999 [Abstract] [Full Text] [Related] Page: [Next] [New Search]