These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
151 related items for PubMed ID: 6424704
1. Effect of pH on the activities of penicillopepsin and Rhizopus pepsin and a proposal for the productive substrate binding mode in penicillopepsin. Hofmann T, Hodges RS, James MN. Biochemistry; 1984 Feb 14; 23(4):635-43. PubMed ID: 6424704 [Abstract] [Full Text] [Related]
2. Effect of secondary substrate binding in penicillopepsin: contributions of subsites S3 and S2' to kcat. Hofmann T, Allen B, Bendiner M, Blum M, Cunningham A. Biochemistry; 1988 Feb 23; 27(4):1140-6. PubMed ID: 3284578 [Abstract] [Full Text] [Related]
3. A new chromophoric substrate for penicillopepsin and other fungal aspartic proteinases. Hofmann T, Hodges RS. Biochem J; 1982 Jun 01; 203(3):603-10. PubMed ID: 7052062 [Abstract] [Full Text] [Related]
4. Structural study on the active site of porcine pepsin and Rhizopus chinensis acid protease. Spin labeling with diazoketone reagents. Nakayama S, Nagashima Y, Hoshino M, Moriyama A, Takahashi K, Watanabe T, Yoshida M. J Biochem; 1983 May 01; 93(5):1297-304. PubMed ID: 6309756 [Abstract] [Full Text] [Related]
6. Conformational flexibility in the active sites of aspartyl proteinases revealed by a pepstatin fragment binding to penicillopepsin. James MN, Sielecki A, Salituro F, Rich DH, Hofmann T. Proc Natl Acad Sci U S A; 1982 Oct 01; 79(20):6137-41. PubMed ID: 6755464 [Abstract] [Full Text] [Related]
7. The pH dependence of the hydrolysis of chromogenic substrates of the type, Lys-Pro-Xaa-Yaa-Phe-(NO2)Phe-Arg-Leu, by selected aspartic proteinases: evidence for specific interactions in subsites S3 and S2. Dunn BM, Valler MJ, Rolph CE, Foundling SI, Jimenez M, Kay J. Biochim Biophys Acta; 1987 Jun 17; 913(2):122-30. PubMed ID: 3109484 [Abstract] [Full Text] [Related]
8. Crystallographic analysis of transition-state mimics bound to penicillopepsin: phosphorus-containing peptide analogues. Fraser ME, Strynadka NC, Bartlett PA, Hanson JE, James MN. Biochemistry; 1992 Jun 09; 31(22):5201-14. PubMed ID: 1606144 [Abstract] [Full Text] [Related]
9. N-terminal amino acid sequences of acid proteases: acid proteases from Penicillium roqueforti and Rhizopus chinensis and alignment with penicillopepsin and mammalian proteases. Gripon JC, Rhee SH, Hofmann T. Can J Biochem; 1977 May 09; 55(5):504-6. PubMed ID: 328116 [Abstract] [Full Text] [Related]
10. Molecular and crystal structures of monoclinic porcine pepsin refined at 1.8 A resolution. Sielecki AR, Fedorov AA, Boodhoo A, Andreeva NS, James MN. J Mol Biol; 1990 Jul 05; 214(1):143-70. PubMed ID: 2115087 [Abstract] [Full Text] [Related]
11. Structure and refinement at 1.8 A resolution of the aspartic proteinase from Rhizopus chinensis. Suguna K, Bott RR, Padlan EA, Subramanian E, Sheriff S, Cohen GH, Davies DR. J Mol Biol; 1987 Aug 20; 196(4):877-900. PubMed ID: 3316666 [Abstract] [Full Text] [Related]
12. [Theoretical studies of the electrostatic interactions in aspartic proteinases, intramolecular interactions in pepsin and penicillopepsin]. Miteva A, Karshikov A, Atanasov B, Zhdanov AA, Andreeva NS. Mol Biol (Mosk); 1988 Aug 20; 22(6):1456-63. PubMed ID: 3150853 [Abstract] [Full Text] [Related]
13. Secondary substrate binding in aspartic proteinases: contributions of subsites S3 and S'2 to kcat. Balbaa M, Cunningham A, Hofmann T. Arch Biochem Biophys; 1993 Nov 01; 306(2):297-303. PubMed ID: 8215428 [Abstract] [Full Text] [Related]
14. Engineering of porcine pepsin. Alteration of S1 substrate specificity of pepsin to those of fungal aspartic proteinases by site-directed mutagenesis. Shintani T, Nomura K, Ichishima E. J Biol Chem; 1997 Jul 25; 272(30):18855-61. PubMed ID: 9228062 [Abstract] [Full Text] [Related]
15. pH dependence of kinetic parameters of pepsin, rhizopuspepsin, and their active-site hydrogen bond mutants. Lin Y, Fusek M, Lin X, Hartsuck JA, Kezdy FJ, Tang J. J Biol Chem; 1992 Sep 15; 267(26):18413-8. PubMed ID: 1526982 [Abstract] [Full Text] [Related]
16. Penicillopepsin-JT2, a recombinant enzyme from Penicillium janthinellum and the contribution of a hydrogen bond in subsite S3 to k(cat). Cao QN, Stubbs M, Ngo KQ, Ward M, Cunningham A, Pai EF, Tu GC, Hofmann T. Protein Sci; 2000 May 15; 9(5):991-1001. PubMed ID: 10850809 [Abstract] [Full Text] [Related]
17. Crystal structure of human pepsin and its complex with pepstatin. Fujinaga M, Chernaia MM, Tarasova NI, Mosimann SC, James MN. Protein Sci; 1995 May 15; 4(5):960-72. PubMed ID: 7663352 [Abstract] [Full Text] [Related]
18. Spin-labeling of porcine pepsin and Rhizopus chinensis acid protease by diazoketone reagents. Nakayama S, Nagashima Y, Hoshino M, Moriyama A, Takahashi K, Uematsu Y, Watanabe T, Yoshida M. Biochem Biophys Res Commun; 1981 Jul 30; 101(2):658-62. PubMed ID: 6796077 [No Abstract] [Full Text] [Related]
19. Comparison of the active site specificity of the aspartic proteinases based on a systematic series of peptide substrates. Dunn BM, Scarborough PE, Lowther WT, Rao-Naik C. Adv Exp Med Biol; 1995 Jul 30; 362():1-9. PubMed ID: 8540305 [No Abstract] [Full Text] [Related]
20. Enzymic properties of thermopsin. Fusek M, Lin XL, Tang J. J Biol Chem; 1990 Jan 25; 265(3):1496-501. PubMed ID: 2104844 [Abstract] [Full Text] [Related] Page: [Next] [New Search]