These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Studies on the physiological significance of the lack of a pyruvate dehydrogenase complex in Hyphomicrobium sp. Harder W, Matin A, Attwood MM. J Gen Microbiol; 1975 Feb; 86(2):319-26. PubMed ID: 1113081 [Abstract] [Full Text] [Related]
4. Effects of oxygen concentration on the intermediary metabolism of Leishmania major promastigotes. Keegan F, Blum JJ. Mol Biochem Parasitol; 1990 Mar; 39(2):235-45. PubMed ID: 2108330 [Abstract] [Full Text] [Related]
5. Membrane enzymes associated with the dissimilation of some citric acid cycle substrates and production of extracellular oxidation products in chemostat cultures of Pseudomonas fluorescens. Lee WS, Cooper JK, Lynch WH. Can J Microbiol; 1984 Mar; 30(3):396-405. PubMed ID: 6426768 [Abstract] [Full Text] [Related]
6. Fructose catabolism in Azospirillum brasilense and Azospirillum lipoferum. Goebel EM, Krieg NR. J Bacteriol; 1984 Jul; 159(1):86-92. PubMed ID: 6735986 [Abstract] [Full Text] [Related]
7. THE UTILIZATION OF ACONATE AND ITACONATE BY MICROCOCCUS SP. COOPER RA, ITIABA K, KORNBERG HL. Biochem J; 1965 Jan; 94(1):25-31. PubMed ID: 14342240 [Abstract] [Full Text] [Related]
8. Physiology of sporeforming bacteria associated with insects. 3. Radiorespirometry of pyruvate, acetate, succinate, and glutamate oxidation. Bulla LA, St Julian G, Rhodes RA. Can J Microbiol; 1971 Aug; 17(8):1073-9. PubMed ID: 4938112 [No Abstract] [Full Text] [Related]
9. Determination of Krebs cycle metabolic carbon exchange in vivo and its use to estimate the individual contributions of gluconeogenesis and glycogenolysis to overall glucose output in man. Consoli A, Kennedy F, Miles J, Gerich J. J Clin Invest; 1987 Nov; 80(5):1303-10. PubMed ID: 3680498 [Abstract] [Full Text] [Related]
10. Glucose enters mitochondrial metabolism via both carboxylation and decarboxylation of pyruvate in pancreatic islets. MacDonald MJ. Metabolism; 1993 Oct; 42(10):1229-31. PubMed ID: 8412734 [Abstract] [Full Text] [Related]
11. Glucose catabolism in Rhizobium japonicum. Keele BB, Hamilton PB, Elkan GH. J Bacteriol; 1969 Mar; 97(3):1184-91. PubMed ID: 5776525 [Abstract] [Full Text] [Related]
12. The metabolic activity of the bovine epididymis. II. Utilization of acetate, succinate, pyruvate, lactate and glucose. Turner TT, Johnson AD. J Reprod Fertil; 1973 Dec; 35(3):445-51. PubMed ID: 4795223 [No Abstract] [Full Text] [Related]
13. A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Tarrand JJ, Krieg NR, Döbereiner J. Can J Microbiol; 1978 Aug; 24(8):967-80. PubMed ID: 356945 [Abstract] [Full Text] [Related]
14. The pathway of formation of acetate and succinate from pyruvate by Bacteroides succinogenes. Miller TL. Arch Microbiol; 1978 May 30; 117(2):145-52. PubMed ID: 678020 [Abstract] [Full Text] [Related]
15. Pyruvate metabolism in Helicobacter pylori. Mendz GL, Hazell SL, van Gorkom L. Arch Microbiol; 1994 May 30; 162(3):187-92. PubMed ID: 7979873 [Abstract] [Full Text] [Related]
17. The accumulation of succinate by the yeast Brettanomyces bruxellensis. Sanfaçon R, Roulliard R, Heick HM. Can J Microbiol; 1976 Feb 30; 22(2):213-20. PubMed ID: 1260528 [Abstract] [Full Text] [Related]