These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


545 related items for PubMed ID: 6425275

  • 1. X-ray diffraction studies on chromatophore membrane from photosynthetic bacteria. II. Comparison of diffraction patterns of photosynthetic units from various purple bacteria.
    Kataoka M, Inai K, Ueki T, Yamashita J.
    J Biochem; 1984 Feb; 95(2):567-73. PubMed ID: 6425275
    [Abstract] [Full Text] [Related]

  • 2. X-ray diffraction studies on chromatophore membrane from photosynthetic bacteria. III. Basic structure of the photosynthetic unit and its relation to other bacteriochlorophyll forms.
    Nakamoto S, Kataoka M, Ueki T.
    J Biochem; 1984 Dec; 96(6):1831-9. PubMed ID: 6442292
    [Abstract] [Full Text] [Related]

  • 3. Dichroism of bacteriochlorophyll in chromatophores of photosynthetic bacteria.
    Morita S, Miyazaki T.
    J Biochem; 1978 Jun; 83(6):1715-20. PubMed ID: 97281
    [Abstract] [Full Text] [Related]

  • 4. Isolation, characterization, and comparison of a ubiquitous pigment-protein complex consisting of a reaction center and light-harvesting bacteriochlorophyll proteins present in purple photosynthetic bacteria.
    Ueda T, Morimoto Y, Sato M, Kakuno T, Yamashita J, Horio T.
    J Biochem; 1985 Dec; 98(6):1487-98. PubMed ID: 3937841
    [Abstract] [Full Text] [Related]

  • 5. X-ray diffraction studies on chromatophore membrane from photosynthetic bacteria. I. Diffraction pattern of the photoreaction unit isolated from Rhodospirillum rubrum chromatophore and some characteristics of the structure.
    Kataoka M, Ueki T.
    J Biochem; 1981 Jan; 89(1):71-8. PubMed ID: 6783640
    [Abstract] [Full Text] [Related]

  • 6. The preparation and characterization of different types of light-harvesting pigment-protein complexes from some purple bacteria.
    Cogdell RJ, Thornber JP.
    Ciba Found Symp; 1981 Jan; (61):61-79. PubMed ID: 110568
    [Abstract] [Full Text] [Related]

  • 7. Changes in the acyl lipid composition of photosynthetic bacteria grown under photosynthetic and non-photosynthetic conditions.
    Russell NJ, Harwood JL.
    Biochem J; 1979 Aug 01; 181(2):339-45. PubMed ID: 115463
    [Abstract] [Full Text] [Related]

  • 8. In vitro reconstitution of the core and peripheral light-harvesting complexes of Rhodospirillum molischianum from separately isolated components.
    Todd JB, Parkes-Loach PS, Leykam JF, Loach PA.
    Biochemistry; 1998 Dec 15; 37(50):17458-68. PubMed ID: 9860861
    [Abstract] [Full Text] [Related]

  • 9. [Fermentation of pyruvate by 7 species of phototrophic purple bacteria].
    Gürgün V, Kirchner G, Pfennig N.
    Z Allg Mikrobiol; 1976 Dec 15; 16(8):573-86. PubMed ID: 12621
    [Abstract] [Full Text] [Related]

  • 10. [Use of urea by purple bacteria].
    Malofeeva IV.
    Mikrobiologiia; 1979 Dec 15; 48(3):411-7. PubMed ID: 112359
    [Abstract] [Full Text] [Related]

  • 11. Cytochromes c' in their reaction with ethyl isocyanide.
    Rubinow SC, Kassner RJ.
    Biochemistry; 1984 Jun 05; 23(12):2590-5. PubMed ID: 6087877
    [Abstract] [Full Text] [Related]

  • 12. Fast stages of photoelectric processes in biological membranes. III. Bacterial photosynthetic redox system.
    Drachev LA, Semenov AYu, Skulachev VP, Smirnova IA, Chamorovsky SK, Kononenko AA, Rubin AB, Uspenskaya NYa.
    Eur J Biochem; 1981 Jul 05; 117(3):483-9. PubMed ID: 6793358
    [Abstract] [Full Text] [Related]

  • 13. Purple-bacterial light-harvesting complexes.
    Cogdell RJ.
    Biochem Soc Trans; 1986 Feb 05; 14(1):4-5. PubMed ID: 3082693
    [No Abstract] [Full Text] [Related]

  • 14. Model for the light-harvesting complex I (B875) of Rhodobacter sphaeroides.
    Hu X, Schulten K.
    Biophys J; 1998 Aug 05; 75(2):683-94. PubMed ID: 9675170
    [Abstract] [Full Text] [Related]

  • 15. [Possible pathways for acetyl-CoA formation by purple bacteria].
    Krasil'nikova EN, Kondrat'eva EN.
    Mikrobiologiia; 1979 Aug 05; 48(5):779-84. PubMed ID: 228168
    [Abstract] [Full Text] [Related]

  • 16. Fluorescence of bacteriochlorophyll as related to the photochemistry of chromatophores of photosynthetic bacteria.
    Suzuki Y, Takamiya A.
    Biochim Biophys Acta; 1972 Sep 20; 275(3):358-68. PubMed ID: 4627083
    [No Abstract] [Full Text] [Related]

  • 17. Flash-induced changes in the in vivo bacteriochlorophyll fluorescence yield at low temperatures and low redox potentials in carotenoid-containing strains of photosynthetic bacteria.
    Holmes NG, van Grondelle R, Duysens LN.
    Biochim Biophys Acta; 1978 Jul 06; 503(1):26-36. PubMed ID: 96856
    [Abstract] [Full Text] [Related]

  • 18. Control of synthesis of reaction center bacteriochlorophyll in photosynthetic bacteria.
    Aagaard J, Sistrom WR.
    Photochem Photobiol; 1972 Feb 06; 15(2):209-25. PubMed ID: 4621847
    [No Abstract] [Full Text] [Related]

  • 19. Isolation and characterization of a membrane-bound, low-potential c-type cytochrome from purple photosynthetic bacteria, with special reference to Rhodospirillum rubrum.
    Yoch DC, Carithers RP, Arnon DI.
    J Bacteriol; 1978 Dec 06; 136(3):1018-26. PubMed ID: 214418
    [Abstract] [Full Text] [Related]

  • 20. [Comparative study of light-harvesting complexes of purple photosynthetic bacteria Chromatium minutissimum and Rhodopseudomonas palustris].
    Erokhin IuE, Chugunov VA, Makhneva ZK, Agrikova IM, Shanturova TV.
    Biokhimiia; 1977 Oct 06; 42(10):1817-24. PubMed ID: 922068
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 28.