These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


128 related items for PubMed ID: 6431743

  • 1. The effect of noise and carbogen on cochlear vasculature.
    Dengerink HA, Axelsson A, Miller JM, Wright JW.
    Acta Otolaryngol; 1984; 98(1-2):81-8. PubMed ID: 6431743
    [Abstract] [Full Text] [Related]

  • 2. The effects of Carbogen, carbon dioxide, and oxygen on noise-induced hearing loss.
    Hatch M, Tsai M, LaRouere MJ, Nuttall AL, Miller JM.
    Hear Res; 1991 Nov; 56(1-2):265-72. PubMed ID: 1769919
    [Abstract] [Full Text] [Related]

  • 3. The effect of CO2- and O2-gas mixtures on laser Doppler measured cochlear and skin blood flow in guinea pigs.
    Kallinen J, Didier A, Miller JM, Nuttall A, Grénman R.
    Hear Res; 1991 Oct; 55(2):255-62. PubMed ID: 1757293
    [Abstract] [Full Text] [Related]

  • 4. Effects of carbogen on cochlear blood flow and hearing function following acute acoustic trauma in guinea pigs.
    Zhao J, Sun J, Liu Y.
    Arch Med Res; 2012 Oct; 43(7):530-5. PubMed ID: 23085262
    [Abstract] [Full Text] [Related]

  • 5. Effects of carbogen on decreases in endocochlear potential and cochlear microcirculation induced by ischemia of the cochlea.
    Hua HB, Chang JS, Rui G.
    Acta Otolaryngol; 1993 Nov; 113(6):720-4. PubMed ID: 8291429
    [Abstract] [Full Text] [Related]

  • 6. Effects of oxygen and carbon dioxide on human retinal circulation.
    Pakola SJ, Grunwald JE.
    Invest Ophthalmol Vis Sci; 1993 Sep; 34(10):2866-70. PubMed ID: 8360019
    [Abstract] [Full Text] [Related]

  • 7. The effect of CO2-breathing on cochlear blood flow.
    Hultcrantz E, Larsen HC, Angelborg C.
    Arch Otorhinolaryngol; 1980 Sep; 228(3):211-5. PubMed ID: 6775623
    [Abstract] [Full Text] [Related]

  • 8. Variability in blood flow and pO2 in tumors in response to carbogen breathing.
    Lanzen JL, Braun RD, Ong AL, Dewhirst MW.
    Int J Radiat Oncol Biol Phys; 1998 Nov 01; 42(4):855-9. PubMed ID: 9845110
    [Abstract] [Full Text] [Related]

  • 9. Reduction of acoustically-induced auditory impairment by inhalation of carbogen gas. I. Permanent noise-induced cochlear damage.
    Brown JJ, Vernon JA, Fenwick JA.
    Acta Otolaryngol; 1982 Nov 01; 93(5-6):319-28. PubMed ID: 6808800
    [Abstract] [Full Text] [Related]

  • 10. The effects of hyperoxic and hypercarbic gases on tumour blood flow.
    Dunn TJ, Braun RD, Rhemus WE, Rosner GL, Secomb TW, Tozer GM, Chaplin DJ, Dewhirst MW.
    Br J Cancer; 1999 Apr 01; 80(1-2):117-26. PubMed ID: 10389987
    [Abstract] [Full Text] [Related]

  • 11. Effects of prestimulatory carbogen inhalation on noise-induced temporary threshold shifts in humans and chinchilla.
    Witter HL, Deka RC, Lipscomb DM, Shambaugh GE.
    Am J Otol; 1980 Apr 01; 1(4):227-32. PubMed ID: 6779637
    [Abstract] [Full Text] [Related]

  • 12. Effects of the interaction between carbogen and nicotinamide on R3230 Ac tumor blood flow in Fischer 344 rats.
    Braun RD, Lanzen JL, Turnage JA, Rosner G, Dewhirst MW.
    Radiat Res; 2001 May 01; 155(5):724-33. PubMed ID: 11302770
    [Abstract] [Full Text] [Related]

  • 13. TNF-α inhibition using etanercept prevents noise-induced hearing loss by improvement of cochlear blood flow in vivo.
    Arpornchayanon W, Canis M, Ihler F, Settevendemie C, Strieth S.
    Int J Audiol; 2013 Aug 01; 52(8):545-52. PubMed ID: 23786392
    [Abstract] [Full Text] [Related]

  • 14. Effects of CO2 inhalation on cochlear blood circulation.
    Hultcrantz E, Larsen HC, Angelborg C.
    ORL J Otorhinolaryngol Relat Spec; 1980 Aug 01; 42(5):304-12. PubMed ID: 6779249
    [Abstract] [Full Text] [Related]

  • 15. Reduction of acoustically induced auditory impairment by inhalation of carbogen gas. II. Temporary pure-tone induced depression of cochlear action potentials.
    Brown JJ, Meikle MB, Lee CA.
    Acta Otolaryngol; 1985 Aug 01; 100(3-4):218-28. PubMed ID: 3933278
    [Abstract] [Full Text] [Related]

  • 16. The recovery of vascular changes following brief noise exposure.
    Dengerink H, Miller J, Axelsson A, Vertes D, Van Dalfsen P.
    Acta Otolaryngol; 1985 Aug 01; 100(1-2):19-25. PubMed ID: 4024890
    [Abstract] [Full Text] [Related]

  • 17. Effects of oxygen and carbogen breathing on choroidal hemodynamics in humans.
    Kergoat H, Faucher C.
    Invest Ophthalmol Vis Sci; 1999 Nov 01; 40(12):2906-11. PubMed ID: 10549651
    [Abstract] [Full Text] [Related]

  • 18. Measurement of human cochlear blood flow.
    Miller JM, Bredberg G, Grenman R, Suonpää J, Lindström B, Didier A.
    Ann Otol Rhinol Laryngol; 1991 Jan 01; 100(1):44-53. PubMed ID: 1824672
    [Abstract] [Full Text] [Related]

  • 19. Noise-induced cochlear hypoxia is intensity dependent, correlates with hearing loss and precedes reduction of cochlear blood flow.
    Lamm K, Arnold W.
    Audiol Neurootol; 1996 Jan 01; 1(3):148-60. PubMed ID: 9390798
    [Abstract] [Full Text] [Related]

  • 20. Provoked flux motion of cochlear blood flow measured with laser Doppler flowmetry in guinea pig.
    Ren TY, Nuttall AL, Miller JM.
    Acta Otolaryngol; 1993 Sep 01; 113(5):609-14. PubMed ID: 8266787
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.