These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


152 related items for PubMed ID: 6431886

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. An active process in cochlear mechanics.
    Davis H.
    Hear Res; 1983 Jan; 9(1):79-90. PubMed ID: 6826470
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. The frequency selectivity of auditory nerve fibres and hair cells in the cochlea of the turtle.
    Crawford AC, Fettiplace R.
    J Physiol; 1980 Sep; 306():79-125. PubMed ID: 7463380
    [Abstract] [Full Text] [Related]

  • 6. Click-evoked gross potentials and single-unit thresholds in acoustically traumatized cats.
    Pettigrew AM, Liberman MC, Kiang NY.
    Ann Otol Rhinol Laryngol Suppl; 1984 Sep; 112():83-96. PubMed ID: 6431888
    [Abstract] [Full Text] [Related]

  • 7. ["The cochlear amplifier". A crucial component of the hearing mechanism].
    Ulfendahl M.
    Lakartidningen; 1997 Nov 05; 94(45):4077-80. PubMed ID: 9424498
    [Abstract] [Full Text] [Related]

  • 8. The responses of inner and outer hair cells in the basal turn of the guinea-pig cochlea and in the mouse cochlea grown in vitro.
    Russell IJ, Cody AR, Richardson GP.
    Hear Res; 1986 Nov 05; 22():199-216. PubMed ID: 3733540
    [Abstract] [Full Text] [Related]

  • 9. Intracellular recordings from cochlear inner hair cells: effects of stimulation of the crossed olivocochlear efferents.
    Brown MC, Nuttall AL, Masta RI.
    Science; 1983 Oct 07; 222(4619):69-72. PubMed ID: 6623058
    [Abstract] [Full Text] [Related]

  • 10. Development of cochlear amplification, frequency tuning, and two-tone suppression in the mouse.
    Song L, McGee J, Walsh EJ.
    J Neurophysiol; 2008 Jan 07; 99(1):344-55. PubMed ID: 17989242
    [Abstract] [Full Text] [Related]

  • 11. Cochlear transduction: an integrative model and review.
    Brownell WE.
    Hear Res; 1982 Apr 07; 6(3):335-60. PubMed ID: 6282796
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Properties of auditory nerve responses in absence of outer hair cells.
    Dallos P, Harris D.
    J Neurophysiol; 1978 Mar 07; 41(2):365-83. PubMed ID: 650272
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. A model of cochlear mechanics with outer hair cell motility.
    Neely ST.
    J Acoust Soc Am; 1993 Jul 07; 94(1):137-46. PubMed ID: 8354757
    [Abstract] [Full Text] [Related]

  • 19. Frequency tuning of basilar membrane and auditory nerve fibers in the same cochleae.
    Narayan SS, Temchin AN, Recio A, Ruggero MA.
    Science; 1998 Dec 04; 282(5395):1882-4. PubMed ID: 9836636
    [Abstract] [Full Text] [Related]

  • 20. [New data on the physiology of the olivo-cochlear efferent systems].
    Bonfils P, Puel JL, Remond MC, Pujol R.
    C R Seances Soc Biol Fil; 1987 Dec 04; 181(1):30-4. PubMed ID: 2954619
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.