These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
116 related items for PubMed ID: 6444203
1. The influence of cholesterol incorporation and removal on lipid-bilayer viscosity and electron transfer in rat-liver microsomes. Archakov AI, Borodin EA, Dobretsov GE, Karasevich EI, Karyakin AV. Eur J Biochem; 1983 Jul 15; 134(1):89-95. PubMed ID: 6444203 [Abstract] [Full Text] [Related]
2. [Effect of incorporation and removal of cholesterol on the lipid bilayer viscosity and the rate of oxidative reactions in rat liver microsomal membranes]. Borodin EA, Dobretsov GE, Karasevich EI, Karuzina II, Kariakin AV. Biokhimiia; 1981 Jun 15; 46(6):1109-18. PubMed ID: 7260196 [Abstract] [Full Text] [Related]
3. Regulative mechanisms in NADH- and NADPH-supported N-oxidation of 4-chloroaniline catalyzed by cytochrome b5-enriched rabbit liver microsomal fractions. Golly I, Hlavica P. Biochim Biophys Acta; 1987 Jun 17; 913(2):219-27. PubMed ID: 3109485 [Abstract] [Full Text] [Related]
4. The involvement of cytochrome P-488 and P-450 in NADH-dependent O-demethylation of p-nitroanisole in rat liver microsomes. Kamataki T, Kitada M, Shigematsu H, Kitagawa H. Jpn J Pharmacol; 1979 Apr 17; 29(2):191-201. PubMed ID: 43909 [Abstract] [Full Text] [Related]
5. Roles of cytochrome b5 in the oxidation of testosterone and nifedipine by recombinant cytochrome P450 3A4 and by human liver microsomes. Yamazaki H, Nakano M, Imai Y, Ueng YF, Guengerich FP, Shimada T. Arch Biochem Biophys; 1996 Jan 15; 325(2):174-82. PubMed ID: 8561495 [Abstract] [Full Text] [Related]
6. Stimulatory effect of cytochrome b5 induced by p-nitroanisole and diisopropyl 1,3-dithiol-2-ylidenemalonate on rat liver microsomal drug hydroxylations. Kawata S, Sugiyama T, Seki K, Tarui S, Okamoto M, Yamano T. J Biochem; 1982 Jul 15; 92(1):305-13. PubMed ID: 6811575 [Abstract] [Full Text] [Related]
7. [Effect of monooxygenase reactions catalyzed by cytochrome P-450 on the microsomal membrane]. Karuzina II, Mengazetdinov DE, Kapitanov AB, Zhukov AA, Ivanova LI. Biokhimiia; 1987 Jul 15; 52(7):1090-6. PubMed ID: 3663748 [Abstract] [Full Text] [Related]
8. Incorporation of cytochrome b5 into rat liver microsomal membranes. Impairment of cytochrome P-450-dependent mixed function oxidase activity. Gibson GG, Clarke SE. Biochem Pharmacol; 1986 Dec 15; 35(24):4431-6. PubMed ID: 3790162 [Abstract] [Full Text] [Related]
9. The reconstitution of microsomal redox chains. A comparitive analysis of the effectiveness of membrane self-assembly and template binding of electron carriers. Archakov AI, Bachmanova GI, Devichensky YM, Karuzina II, Zherebkova NS, Alimov GA, Kuznetsova GP, Karyakin AV. Biochem J; 1974 Oct 15; 144(1):1-9. PubMed ID: 4156829 [Abstract] [Full Text] [Related]
10. Microsomal redox systems in brown adipose tissue: high lipid peroxidation, low cholesterol biosynthesis and no detectable cytochrome P-450. Sekhar BS, Kurup CK, Ramasarma T. Mol Cell Biochem; 1990 Feb 09; 92(2):147-57. PubMed ID: 2106621 [Abstract] [Full Text] [Related]
11. Role of cytochrome b5 in NADH-dependent microsomal reduction of ferric complexes, lipid peroxidation, and hydrogen peroxide generation. Yang MX, Cederbaum AI. Arch Biochem Biophys; 1995 Dec 20; 324(2):282-92. PubMed ID: 8554320 [Abstract] [Full Text] [Related]
12. Kinetic investigation of rat liver microsomal electron transport from NADH to cytochrome P-450. Fisher GJ, Gaylor JL. J Biol Chem; 1982 Jul 10; 257(13):7449-55. PubMed ID: 6806275 [Abstract] [Full Text] [Related]
13. In vitro modification of cholesterol content of rat liver microsomes. Effects upon membrane 'fluidity' and activities of glucose-6-phosphatase and fatty acid desaturation systems. Garda HA, Brenner RR. Biochim Biophys Acta; 1985 Sep 25; 819(1):45-54. PubMed ID: 2994732 [Abstract] [Full Text] [Related]
14. Cytochrome P-450-dependent oxidation of lanosterol in cholesterol biosynthesis. Microsomal electron transport and C-32 demethylation. Trzaskos JM, Bowen WD, Shafiee A, Fischer RT, Gaylor JL. J Biol Chem; 1984 Nov 10; 259(21):13402-12. PubMed ID: 6208195 [Abstract] [Full Text] [Related]
15. The effect of magnesium ions on the dimethylaniline oxidation rate and electron transfer in liver microsomal fraction. Archakov AI, Karuzina II, Kokareva IS, Bachmanova GI. Biochem J; 1973 Oct 10; 136(2):371-9. PubMed ID: 4149444 [Abstract] [Full Text] [Related]
16. [The effect of arginine on cytochrome P-450 activity and the structural state of the microsomal membranes of the rat liver and testes]. Shugaleĭ VS, Ananian AA, Miliutina NP, Chin KT, Popova LN. Nauchnye Doki Vyss Shkoly Biol Nauki; 1991 Oct 10; (9):28-34. PubMed ID: 1751615 [Abstract] [Full Text] [Related]
17. NADH- and NADPH-dependent reconstituted p-nitroanisole O-demethylation system containing cytochrome P-450 with high affinity for cytochrome b5. Sugiyama T, Miki N, Yamano T. J Biochem; 1980 May 10; 87(5):1457-67. PubMed ID: 7390994 [Abstract] [Full Text] [Related]
18. Phospholipid bilayer membranes play decisive roles in the cytochrome P-450-dependent monooxygenase system. Taniguchi H, Pyerin W. J Cancer Res Clin Oncol; 1988 May 10; 114(4):335-40. PubMed ID: 3410874 [Abstract] [Full Text] [Related]
19. Microsomal monooxygenase system in frog livers. Noshiro M, Omura T. Comp Biochem Physiol B; 1984 May 10; 77(4):761-7. PubMed ID: 6329594 [Abstract] [Full Text] [Related]
20. Nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate-dependent reduction of mammalian hepatic microsomal cytochrome b5: some properties of the enzyme system catalyzing the endogenous reduction of pyridine nucleotides. Kulkarni AP, Hodgson E. Int J Biochem; 1982 May 10; 14(9):825-30. PubMed ID: 7128914 [Abstract] [Full Text] [Related] Page: [Next] [New Search]