These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


121 related items for PubMed ID: 6451250

  • 1. The primary cause of hemolysis in enzymopathies of anaerobic glycolysis: a viewpoint.
    Valentine WN, Paglia DE.
    Blood Cells; 1980; 6(4):819-29. PubMed ID: 6451250
    [No Abstract] [Full Text] [Related]

  • 2. Metabolism in haemolytic states.
    Benöhr HC, Waller HD.
    Clin Haematol; 1975 Feb; 4(1):45-62. PubMed ID: 126835
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Pyruvate kinase and the "high ATP syndrome".
    Staal GE, Jansen G, Roos D.
    J Clin Invest; 1984 Jul; 74(1):231-5. PubMed ID: 6736249
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Pyruvate kinase deficiency and other enzymopathies of the Embden--Meyerhof pathway.
    Miwa S.
    Clin Haematol; 1981 Feb; 10(1):57-80. PubMed ID: 6260408
    [No Abstract] [Full Text] [Related]

  • 10. Clinical heterogeneity of erythrocyte pyruvate kinase deficiency. Evidence of an impaired utilization of ATP in a clinically severe form.
    Schröter W.
    Helv Paediatr Acta; 1972 Nov; 27(5):471-88. PubMed ID: 4640902
    [No Abstract] [Full Text] [Related]

  • 11. Red cell enzymopathies of the glycolytic pathway.
    Tanaka KR, Zerez CR.
    Semin Hematol; 1990 Apr; 27(2):165-85. PubMed ID: 2161560
    [Abstract] [Full Text] [Related]

  • 12. Kinetic properties of mutant enzymes in erythrocyte phosphofructokinase deficiency and erythrocyte pyruvate kinase deficiency.
    Shimizu T, Kuwajima M, Kono N, Mineo I, Sumi S, Yonezawa T, Nonaka K, Tarui S.
    Med J Osaka Univ; 1983 Mar; 33(3-4):49-58. PubMed ID: 6225942
    [No Abstract] [Full Text] [Related]

  • 13. Red cells and their enzymes.
    Prankerd TA.
    Sci Basis Med Annu Rev; 1972 Mar; ():145-60. PubMed ID: 4404537
    [No Abstract] [Full Text] [Related]

  • 14. [Quantitative model of human erythrocyte glycolysis. Region of cell viability determined by ATP concentration].
    Ataullakhanov FI, Vitvitskiĭ VM, Zhabotinskiĭ AM, Pichugin AV, Kholodenko BN.
    Biofizika; 1979 Mar; 24(6):1048-53. PubMed ID: 159725
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. The role of red cell aging in the diagnosis of glycolytic enzyme defects.
    Staal GE, Rijksen G.
    Adv Exp Med Biol; 1991 Mar; 307():239-49. PubMed ID: 1805589
    [No Abstract] [Full Text] [Related]

  • 19. [Erythrocyte enzymes, structure and function].
    Kwiatkowska J.
    Postepy Biochem; 1989 Mar; 35(4):575-84. PubMed ID: 2488728
    [No Abstract] [Full Text] [Related]

  • 20. Advances in hereditary red cell enzyme anomalies.
    Kahn A, Kaplan JC, Dreyfus JC.
    Hum Genet; 1979 Mar; 50(1):1-27. PubMed ID: 157322
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.