These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
127 related items for PubMed ID: 6451623
1. Evidence for a calcium-sensitive factor which alters the alkaline pH sensitivity of sarcoplasmic reticulum calcium transport. Tate CA, Chu A, McMillin-Wood J, Van Winkle WB, Entman ML. J Biol Chem; 1981 Mar 25; 256(6):2934-9. PubMed ID: 6451623 [Abstract] [Full Text] [Related]
2. Inhibition of dicarboxylic anion transport by fluorescein isothiocyanate in skeletal sarcoplasmic reticulum. Fisher DJ, Tate CA, Entman ML. Arch Biochem Biophys; 1991 Jul 25; 288(1):208-14. PubMed ID: 1716869 [Abstract] [Full Text] [Related]
3. Comparison of the effects of fluoride on the calcium pumps of cardiac and fast skeletal muscle sarcoplasmic reticulum: evidence for tissue-specific qualitative difference in calcium-induced pump conformation. Hawkins C, Xu A, Narayanan N. Biochim Biophys Acta; 1994 May 11; 1191(2):231-43. PubMed ID: 8172909 [Abstract] [Full Text] [Related]
4. Calmodulin-dependent elevation of calcium transport associated with calmodulin-dependent phosphorylation in cardiac sarcoplasmic reticulum. Plank B, Wyskovsky W, Hellmann G, Suko J. Biochim Biophys Acta; 1983 Jul 13; 732(1):99-109. PubMed ID: 6307368 [Abstract] [Full Text] [Related]
5. Calcium transport by sarcoplasmic reticulum of skeletal muscle is inhibited by antibodies against the 53-kilodalton glycoprotein of the sarcoplasmic reticulum membrane. Kutchai H, Campbell KP. Biochemistry; 1989 May 30; 28(11):4830-9. PubMed ID: 2527558 [Abstract] [Full Text] [Related]
6. Proton inactivation of Ca2+ transport by sarcoplasmic reticulum. Berman MC, McIntosh DB, Kench JE. J Biol Chem; 1977 Feb 10; 252(3):994-1001. PubMed ID: 14142 [Abstract] [Full Text] [Related]
7. Inhibitory and stimulatory effects of fluoride on the calcium pump of cardiac sarcoplasmic reticulum. Narayanan N, Su N, Bedard P. Biochim Biophys Acta; 1991 Nov 18; 1070(1):83-91. PubMed ID: 1836355 [Abstract] [Full Text] [Related]
8. Calcium transport ATPase of canine cardiac sarcoplasmic reticulum. A comparison with that of rabbit fast skeletal muscle sarcoplasmic reticulum. Shigekawa M, Finegan JA, Katz AM. J Biol Chem; 1976 Nov 25; 251(22):6894-900. PubMed ID: 11210 [Abstract] [Full Text] [Related]
9. Enhanced Ca2+ uptake and ATPase activity of sarcoplasmic reticulum in the presence of diethyl ether. Salama G, Scarpa A. J Biol Chem; 1980 Jul 25; 255(14):6525-8. PubMed ID: 6446558 [Abstract] [Full Text] [Related]
10. The effect of pH on the calcium dependence of calcium accumulation in dog cardiac muscle sarcoplasmic reticulum. Grassi de Gende AO. J Mol Cell Cardiol; 1988 Dec 25; 20(12):1087-93. PubMed ID: 2977801 [Abstract] [Full Text] [Related]
11. Nucleotide triphosphate utilization by cardiac and skeletal muscle sarcoplasmic reticulum. Further evidence for an alternative substrate hydrolysis cycle and the effect of calcium NTPase purification. Bick RJ, Van Winkle WB, Tate CA, Entman ML. J Biol Chem; 1983 Apr 10; 258(7):4447-52. PubMed ID: 6300087 [Abstract] [Full Text] [Related]
12. The role of dicarboxylic anion transport in the slower Ca2+ uptake in fetal cardiac sarcoplasmic reticulum. Fisher DJ, Tate CA, Phillips S. Pediatr Res; 1992 Dec 10; 32(6):664-8. PubMed ID: 1337585 [Abstract] [Full Text] [Related]
13. Effects of endogenous calcium transport inhibitor from heart muscle on the active calcium uptake and passive calcium release properties of sarcoplasmic reticulum. Narayanan N, Bedard P, Waraich TS. Can J Physiol Pharmacol; 1989 Sep 10; 67(9):999-1006. PubMed ID: 2598137 [Abstract] [Full Text] [Related]
14. Calcium additional to that bound to the transport sites is required for full activation of the sarcoplasmic reticulum Ca-ATPase from skeletal muscle. Alonso GL, González DA, Takara D, Ostuni MA, Sánchez GA. Biochim Biophys Acta; 1998 Oct 21; 1405(1-3):47-54. PubMed ID: 9784602 [Abstract] [Full Text] [Related]
15. Oxalate, calcium uptake and ATPase activity of sarcoplasmic reticulum vesicles. Kim YS, Martin DF, Padilla GM. Bioinorg Chem; 1976 Oct 21; 6(4):329-39. PubMed ID: 162560 [Abstract] [Full Text] [Related]
16. Mechanism of the stimulation of cardiac sarcoplasmic reticulum calcium pump by calmodulin. Gupta RC, Davis BA, Kranias EG. Membr Biochem; 1976 Oct 21; 7(2):73-86. PubMed ID: 2970004 [Abstract] [Full Text] [Related]
17. The effect of pH on the transient-state kinetics of Ca2+-Mg2+-ATPase of cardiac sarcoplasmic reticulum. A comparison with skeletal sarcoplasmic reticulum. Mandel F, Kranias EG, Grassi de Gende A, Sumida M, Schwartz A. Circ Res; 1982 Feb 21; 50(2):310-7. PubMed ID: 6120049 [Abstract] [Full Text] [Related]
18. Effect of pH on stability of sarcoplasmic reticulum calcium pump in rabbit heart. Xu A, Narayanan N, Samson SE, Grover AK. Mol Cell Biochem; 1993 Sep 08; 126(1):87-91. PubMed ID: 8107693 [Abstract] [Full Text] [Related]
19. Regulation of Ca2+ transport by sarcoplasmic reticulum Ca2+-ATPase at limiting [Ca2+]. Berman MC. Biochim Biophys Acta; 1999 Apr 14; 1418(1):48-60. PubMed ID: 10209210 [Abstract] [Full Text] [Related]
20. Preparation and characterization of longitudinal tubules of sarcoplasmic reticulum from fast skeletal muscle. Chu A, Saito A, Fleischer S. Arch Biochem Biophys; 1987 Oct 14; 258(1):13-23. PubMed ID: 2444161 [Abstract] [Full Text] [Related] Page: [Next] [New Search]