These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


165 related items for PubMed ID: 6459325

  • 1. The regulation of Ca2+ transport by fast skeletal muscle sarcoplasmic reticulum. Role of calmodulin and of the 53,000-dalton glycoprotein.
    Chiesi M, Carafoli E.
    J Biol Chem; 1982 Jan 25; 257(2):984-91. PubMed ID: 6459325
    [Abstract] [Full Text] [Related]

  • 2. Calmodulin-dependent elevation of calcium transport associated with calmodulin-dependent phosphorylation in cardiac sarcoplasmic reticulum.
    Plank B, Wyskovsky W, Hellmann G, Suko J.
    Biochim Biophys Acta; 1983 Jul 13; 732(1):99-109. PubMed ID: 6307368
    [Abstract] [Full Text] [Related]

  • 3. Role of phospholamban in regulating cardiac sarcoplasmic reticulum calcium pump.
    Ambudkar IS, Shamoo AE.
    Membr Biochem; 1984 Jul 13; 5(2):119-30. PubMed ID: 6143239
    [Abstract] [Full Text] [Related]

  • 4. Ca2+/calmodulin-dependent phosphorylation of the Ca2+-ATPase, uncoupled from phospholamban, stimulates Ca2+-pumping in native cardiac sarcoplasmic reticulum.
    Xu A, Narayanan N.
    Biochem Biophys Res Commun; 1999 Apr 29; 258(1):66-72. PubMed ID: 10222236
    [Abstract] [Full Text] [Related]

  • 5. Comparison of the effects of the membrane-associated Ca2+/calmodulin-dependent protein kinase on Ca(2+)-ATPase function in cardiac and slow-twitch skeletal muscle sarcoplasmic reticulum.
    Hawkins C, Xu A, Narayanan N.
    Mol Cell Biochem; 1995 Jan 26; 142(2):131-8. PubMed ID: 7770065
    [Abstract] [Full Text] [Related]

  • 6. Calmidazolium and compound 48/80 inhibit calmodulin-dependent protein phosphorylation and ATP-dependent Ca2+ uptake but not Ca2+-ATPase activity in skeletal muscle sarcoplasmic reticulum.
    Tuana BS, MacLennan DH.
    J Biol Chem; 1984 Jun 10; 259(11):6979-83. PubMed ID: 6233277
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Mechanism of the stimulation of cardiac sarcoplasmic reticulum calcium pump by calmodulin.
    Gupta RC, Davis BA, Kranias EG.
    Membr Biochem; 1984 Jun 10; 7(2):73-86. PubMed ID: 2970004
    [Abstract] [Full Text] [Related]

  • 11. Coupling of Ca2+ transport to ATP hydrolysis by the Ca2+-ATPase of sarcoplasmic reticulum: potential role of the 53-kilodalton glycoprotein.
    Leonards KS, Kutchai H.
    Biochemistry; 1985 Aug 27; 24(18):4876-84. PubMed ID: 2934086
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. High efficiency Ca2+ transport by the sarcoplasmic reticulum Ca2(+)-ATPase in the absence of the 53-kilodalton glycoprotein.
    Martin DW.
    J Biol Chem; 1990 Dec 05; 265(34):20946-51. PubMed ID: 2147428
    [Abstract] [Full Text] [Related]

  • 14. The presence and binding characteristics of calmodulin in microsomal preparations enriched in sarcoplasmic reticulum from rabbit skeletal muscle.
    Eibschutz B, Wong AP, Lopaschuk GD, Katz S.
    Cell Calcium; 1984 Aug 05; 5(4):391-400. PubMed ID: 6237729
    [Abstract] [Full Text] [Related]

  • 15. High molecular weight proteins in cardiac and skeletal muscle junctional sarcoplasmic reticulum vesicles bind calmodulin, are phosphorylated, and are degraded by Ca2+-activated protease.
    Seiler S, Wegener AD, Whang DD, Hathaway DR, Jones LR.
    J Biol Chem; 1984 Jul 10; 259(13):8550-7. PubMed ID: 6203912
    [Abstract] [Full Text] [Related]

  • 16. Nucleotide triphosphate utilization by cardiac and skeletal muscle sarcoplasmic reticulum. Further evidence for an alternative substrate hydrolysis cycle and the effect of calcium NTPase purification.
    Bick RJ, Van Winkle WB, Tate CA, Entman ML.
    J Biol Chem; 1983 Apr 10; 258(7):4447-52. PubMed ID: 6300087
    [Abstract] [Full Text] [Related]

  • 17. Purification, calcium binding properties, and ultrastructural localization of the 53,000- and 160,000 (sarcalumenin)-dalton glycoproteins of the sarcoplasmic reticulum.
    Leberer E, Timms BG, Campbell KP, MacLennan DH.
    J Biol Chem; 1990 Jun 15; 265(17):10118-24. PubMed ID: 2112542
    [Abstract] [Full Text] [Related]

  • 18. Calcium transport by sarcoplasmic reticulum of skeletal muscle is inhibited by antibodies against the 53-kilodalton glycoprotein of the sarcoplasmic reticulum membrane.
    Kutchai H, Campbell KP.
    Biochemistry; 1989 May 30; 28(11):4830-9. PubMed ID: 2527558
    [Abstract] [Full Text] [Related]

  • 19. The effect of phenothiazines on Ca2+ fluxes in skeletal muscle sarcoplasmic reticulum.
    Volpe P, Costello B, Chu A, Fleischer S.
    Arch Biochem Biophys; 1984 Aug 15; 233(1):174-9. PubMed ID: 6147120
    [Abstract] [Full Text] [Related]

  • 20. Trifluoperazine binding to porcine brain calmodulin and skeletal muscle troponin C.
    Massom L, Lee H, Jarrett HW.
    Biochemistry; 1990 Jan 23; 29(3):671-81. PubMed ID: 2110826
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.