These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


104 related items for PubMed ID: 6463367

  • 1. Adriamycin and derivatives interaction with the mitochondrial membrane: O2 consumption and free radicals formation.
    Pollakis G, Goormaghtigh E, Delmelle M, Lion Y, Ruysschaert JM.
    Res Commun Chem Pathol Pharmacol; 1984 Jun; 44(3):445-59. PubMed ID: 6463367
    [Abstract] [Full Text] [Related]

  • 2. Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase.
    Davies KJ, Doroshow JH.
    J Biol Chem; 1986 Mar 05; 261(7):3060-7. PubMed ID: 3456345
    [Abstract] [Full Text] [Related]

  • 3. Electron spin resonance studies on the mechanism of adriamycin-induced heart mitochondrial damages.
    Ogura R, Sugiyama M, Haramaki N, Hidaka T.
    Cancer Res; 1991 Jul 01; 51(13):3555-8. PubMed ID: 1647271
    [Abstract] [Full Text] [Related]

  • 4. Mitochondrial NADH dehydrogenase-catalyzed oxygen radical production by adriamycin, and the relative inactivity of 5-iminodaunorubicin.
    Davies KJ, Doroshow JH, Hochstein P.
    FEBS Lett; 1983 Mar 07; 153(1):227-30. PubMed ID: 6298008
    [No Abstract] [Full Text] [Related]

  • 5. The structural basis for anthracycline antibiotic stimulation of oxygen consumption by HL-60 cells and mitochondria.
    Burke TG, Pritsos CA, Sartorelli AC, Tritton TR.
    Cancer Biochem Biophys; 1987 Sep 07; 9(3):245-55. PubMed ID: 3124953
    [Abstract] [Full Text] [Related]

  • 6. Role of the quinone structure in the mitochondrial damage induced by antitumor anthracyclines. Comparison of adriamycin and 5-iminodaunorubicin.
    Pollakis G, Goormaghtigh E, Ruysschaert JM.
    FEBS Lett; 1983 May 08; 155(2):267-72. PubMed ID: 6852236
    [Abstract] [Full Text] [Related]

  • 7. [Formation of superoxide radicals in isolated cardiac mitochondria: effect of adriamycin].
    Sviriaeva IV, Ruuge EK, Shumaev KB.
    Biofizika; 2007 May 08; 52(6):1054-9. PubMed ID: 18225657
    [Abstract] [Full Text] [Related]

  • 8. Analyses of the molecular mechanism of adriamycin-induced cardiotoxicity.
    Gille L, Nohl H.
    Free Radic Biol Med; 1997 May 08; 23(5):775-82. PubMed ID: 9296455
    [Abstract] [Full Text] [Related]

  • 9. Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical.
    Doroshow JH, Davies KJ.
    J Biol Chem; 1986 Mar 05; 261(7):3068-74. PubMed ID: 3005279
    [Abstract] [Full Text] [Related]

  • 10. In-vivo and in-vitro mitochondrial membrane damages induced in mice by adriamycin and derivatives.
    Praet M, Ruysschaert JM.
    Biochim Biophys Acta; 1993 Jun 18; 1149(1):79-85. PubMed ID: 8391322
    [Abstract] [Full Text] [Related]

  • 11. Superoxide anion production by adriamycinol from cardiac sarcosomes and by mitochondrial NADH dehydrogenase.
    Gervasi PG, Agrillo MR, Citti L, Danesi R, Del Tacca M.
    Anticancer Res; 1986 Jun 18; 6(5):1231-5. PubMed ID: 3026233
    [Abstract] [Full Text] [Related]

  • 12. Generation of superoxide radicals as byproduct of cellular respiration.
    Nohl H.
    Ann Biol Clin (Paris); 1994 Jun 18; 52(3):199-204. PubMed ID: 7998676
    [Abstract] [Full Text] [Related]

  • 13. A new class of free radical scavengers reducing adriamycin mitochondrial toxicity.
    Praet M, Calderon PB, Pollakis G, Roberfroid M, Ruysschaert JM.
    Biochem Pharmacol; 1988 Dec 15; 37(24):4617-22. PubMed ID: 2849451
    [Abstract] [Full Text] [Related]

  • 14. Inhibition of mitochondrial respiratory chain by alkylthiolated 2,3-dicyano-1,4-benzoquinones.
    Mori K, Hama S, Okamoto T, Kishi T, Sayo H.
    Acta Pharm Nord; 1991 Dec 15; 3(1):57-9. PubMed ID: 1854438
    [Abstract] [Full Text] [Related]

  • 15. The iron-sulfur clusters 2 and ubisemiquinone radicals of NADH:ubiquinone oxidoreductase are involved in energy coupling in submitochondrial particles.
    van Belzen R, Kotlyar AB, Moon N, Dunham WR, Albracht SP.
    Biochemistry; 1997 Jan 28; 36(4):886-93. PubMed ID: 9020788
    [Abstract] [Full Text] [Related]

  • 16. Low stimulation of NADH oxidation and oxygen consumption by 5-iminodaunorubicin and its derivatives.
    Tarasiuk J, Stefańska B, Borowski E.
    Acta Biochim Pol; 1990 Jan 28; 37(2):251-9. PubMed ID: 2072983
    [Abstract] [Full Text] [Related]

  • 17. Doxorubicin-derived metabolites induce release of cytochrome C and inhibition of respiration on cardiac isolated mitochondria.
    Clementi ME, Giardina B, Di Stasio E, Mordente A, Misiti F.
    Anticancer Res; 2003 Jan 28; 23(3B):2445-50. PubMed ID: 12894526
    [Abstract] [Full Text] [Related]

  • 18. [Formation of free radicals during interaction of adriamycin and carminomycin with xanthine oxidase].
    Ledenev AN, Peskin AV, Konstantinov AA, Ruuge EK.
    Biofizika; 1986 Jan 28; 31(3):519-21. PubMed ID: 3013324
    [Abstract] [Full Text] [Related]

  • 19. Studies on myocardial mitochondria in failing dog hearts: studies by electron spin resonance (ESR) spectrometry.
    Suzuki Y, Yamazaki N, Ogawa K, Mizutani K, Kakizawa N.
    Recent Adv Stud Cardiac Struct Metab; 1986 Jan 28; 11():599-603. PubMed ID: 201996
    [Abstract] [Full Text] [Related]

  • 20. Properties of a semiquinone anion located in the QH2:cytochrome c oxidoreductase segment of the mitochondrial respiratory chain.
    de Vries S, Berden JA, Slater EC.
    FEBS Lett; 1980 Dec 15; 122(1):143-8. PubMed ID: 7215541
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.