These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Changes in summating potentials and related electro-physiological manifestations of overstimulation. Durrant JD. J Aud Res; 1979 Jul; 19(3):183-200. PubMed ID: 553923 [No Abstract] [Full Text] [Related]
3. Modifications of the nonlinearity of the cochlear microphonic responses produced by noise exposure in the guinea pig. Legouix JP, Joannès M. Hear Res; 1984 Apr; 14(1):39-44. PubMed ID: 6746420 [Abstract] [Full Text] [Related]
4. Effects of acoustic trauma on the cochlear potentials. Gans DP. J Acoust Soc Am; 1983 Dec; 74(6):1742-6. PubMed ID: 6655132 [Abstract] [Full Text] [Related]
5. Role of the acoustical pressure polarity in the cochlear fatigue provoked by impulse noise. Legouix JP, Pierson A. Scand Audiol Suppl; 1980 Aug; (Suppl 12):147-53. PubMed ID: 6939082 [No Abstract] [Full Text] [Related]
6. [Relationship between cochlear fatigue and the asymmetrical non-linearity of microphonic responses in the guinea pig (author's transl)]. Legouix JP, Pierson A, Minot JF. Ann Otolaryngol Chir Cervicofac; 1979 Dec; 96(12):821-6. PubMed ID: 533088 [Abstract] [Full Text] [Related]
7. [Functional impairment of outer hair cells by noise and assessment by measuring distortion product emissions (DPOAE)]. Oeken J. Laryngorhinootologie; 2000 Dec; 79(12):806-7. PubMed ID: 11199468 [No Abstract] [Full Text] [Related]
9. Audiological findings in the impulse-noise induced hearing loss. Electrocochleographic [ECoG] studies. A preliminary report. Fiałkowska D, Janczewski G, Kochanek K, Dawidowicz J. Scand Audiol Suppl; 1980 Aug; (Suppl 12):257-64. PubMed ID: 6939096 [No Abstract] [Full Text] [Related]
10. Susceptibility to impulse noise trauma in different species: guinea pig, rat and mouse. Duan M, Laurell G, Qiu J, Borg E. Acta Otolaryngol; 2008 Mar; 128(3):277-83. PubMed ID: 17917838 [Abstract] [Full Text] [Related]
11. Brainstem-evoked responses of guinea pigs exposed to high noise levels in utero. Cook RO, Konishi T, Salt AN, Hamm CW, Lebetkin EH, Koo J. Dev Psychobiol; 1982 Mar; 15(2):95-104. PubMed ID: 7095284 [Abstract] [Full Text] [Related]
13. Non-linear aspects of outer hair cell transduction and the temporary threshold shifts after acoustic trauma. Patuzzi R. Audiol Neurootol; 2002 Mar; 7(1):17-20. PubMed ID: 11914520 [Abstract] [Full Text] [Related]
14. [Auditory fatigue in individuals having sustained an acoustic trauma (author's transl)]. Botte MC, Variot MH. Ann Otolaryngol Chir Cervicofac; 1979 Dec; 96(12):827-33. PubMed ID: 533089 [Abstract] [Full Text] [Related]
15. Protection against noise trauma by pre-exposure to a low level acoustic stimulus. Canlon B, Borg E, Flock A. Hear Res; 1988 Jul 15; 34(2):197-200. PubMed ID: 3170362 [Abstract] [Full Text] [Related]
16. Corresponding effects of acoustic fatigue on the cochlear microphonic and the compound action potential. Pierson MG, Møller AR. Hear Res; 1982 Jan 15; 6(1):61-82. PubMed ID: 7054136 [Abstract] [Full Text] [Related]
17. Changes in cochlear microphonic and neural sensitivity produced by acoustic trauma. Patuzzi RB, Yates GK, Johnstone BM. Hear Res; 1989 May 15; 39(1-2):189-202. PubMed ID: 2737965 [Abstract] [Full Text] [Related]
19. Use of animal models in the study of the effects of noise on hearing. Dancer AL. Occup Med; 1995 May 15; 10(3):535-44. PubMed ID: 8578417 [No Abstract] [Full Text] [Related]
20. [Auditory evoked potentials of brain stem during acoustic and electric stimulation of the guinea pig cochlea]. Gukovich VA, Chudnovskiĭ SI, Moroz BS, Chaĭka SP, Poliakov AN. Vestn Otorinolaringol; 1985 May 15; (5):63-4. PubMed ID: 4060466 [No Abstract] [Full Text] [Related] Page: [Next] [New Search]