These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
127 related items for PubMed ID: 6466657
1. Asymmetry of the Na+-succinate cotransporter in rabbit renal brush-border membranes. Hirayama B, Wright EM. Biochim Biophys Acta; 1984 Aug 08; 775(1):17-21. PubMed ID: 6466657 [Abstract] [Full Text] [Related]
2. Kinetics of sodium succinate cotransport across renal brush-border membranes. Wright SH, Hirayama B, Kaunitz JD, Kippen I, Wright EM. J Biol Chem; 1983 May 10; 258(9):5456-62. PubMed ID: 6853527 [Abstract] [Full Text] [Related]
3. Coupling between sodium and succinate transport across renal brush border membrane vesicles. Hirayama B, Wright EM. Pflugers Arch; 1986 May 10; 407 Suppl 2():S174-9. PubMed ID: 3822764 [Abstract] [Full Text] [Related]
4. Effect of cadmium on Na-Pi cotransport kinetics in rabbit renal brush-border membrane vesicles. Park K, Kim KR, Kim JY, Park YS. Toxicol Appl Pharmacol; 1997 Aug 10; 145(2):255-9. PubMed ID: 9266797 [Abstract] [Full Text] [Related]
5. Electrophysiology of succinate transport across rabbit renal brush border membranes. Schell RE, Wright EM. J Physiol; 1985 Mar 10; 360():95-104. PubMed ID: 3989724 [Abstract] [Full Text] [Related]
6. Histidyl residues at the active site of the Na/succinate co-transporter in rabbit renal brush borders. Bindslev N, Wright EM. J Membr Biol; 1984 Mar 10; 81(2):159-70. PubMed ID: 6541702 [Abstract] [Full Text] [Related]
7. Dicarboxylate transport in renal basolateral and brush-border membrane vesicles. Kim YK, Jung JS, Lee SH. Can J Physiol Pharmacol; 1992 Jan 10; 70(1):106-12. PubMed ID: 1581843 [Abstract] [Full Text] [Related]
8. Stoichiometry of Na+-succinate cotransport in renal brush-border membranes. Wright SH, Kippen I, Wright EM. J Biol Chem; 1982 Feb 25; 257(4):1773-8. PubMed ID: 7056744 [Abstract] [Full Text] [Related]
9. Sensitivity of renal brush-border Na+-cotransport systems to anions. Levine R, Hirayama B, Wright EM. Biochim Biophys Acta; 1984 Jan 25; 769(2):508-10. PubMed ID: 6696897 [Abstract] [Full Text] [Related]
10. Sodium-dependent succinate transport in renal outer cortical brush border membrane vesicles. Fukuhara Y, Turner RJ. Am J Physiol; 1983 Sep 25; 245(3):F374-81. PubMed ID: 6225342 [Abstract] [Full Text] [Related]
11. Kinetic asymmetry of renal Na+-L-lactate cotransport. Characteristic parameters and evidence for a ping pong mechanism of the trans-stimulating exchange by pyruvate. Mengual R, Schlageter MH, Sudaka P. J Biol Chem; 1990 Jan 05; 265(1):292-9. PubMed ID: 2294107 [Abstract] [Full Text] [Related]
12. Pathways for carboxylic acid transport by rabbit renal brush border membrane vesicles. Nord E, Wright SH, Kippen I, Wright EM. Am J Physiol; 1982 Nov 05; 243(5):F456-62. PubMed ID: 7137347 [Abstract] [Full Text] [Related]
13. Succinate and citrate transport in renal basolateral and brush-border membranes. Wright SH, Wunz TM. Am J Physiol; 1987 Sep 05; 253(3 Pt 2):F432-9. PubMed ID: 3631279 [Abstract] [Full Text] [Related]
14. Renal brush-border membrane Na(+)-sulfate cotransport: stimulation by thyroid hormone. Tenenhouse HS, Lee J, Harvey N. Am J Physiol; 1991 Sep 05; 261(3 Pt 2):F420-6. PubMed ID: 1832265 [Abstract] [Full Text] [Related]
15. Biotin uptake mechanisms in brush-border and basolateral membrane vesicles isolated from rabbit kidney cortex. Podevin RA, Barbarat B. Biochim Biophys Acta; 1986 Apr 25; 856(3):471-81. PubMed ID: 3964692 [Abstract] [Full Text] [Related]
16. Sodium-pyrazinoate cotransport in rabbit renal brush border membrane vesicles. Manganel M, Roch-Ramel F, Murer H. Am J Physiol; 1985 Sep 25; 249(3 Pt 2):F400-8. PubMed ID: 4037092 [Abstract] [Full Text] [Related]
17. Reconstitution and characterization of a Na+/Pi co-transporter protein from rabbit kidney brush-border membranes. Debiec H, Lorenc R, Ronco PM. Biochem J; 1992 Aug 15; 286 ( Pt 1)(Pt 1):97-102. PubMed ID: 1520289 [Abstract] [Full Text] [Related]
18. Allosterism and Na(+)-D-glucose cotransport kinetics in rabbit jejunal vesicles: compatibility with mixed positive and negative cooperativities in a homo- dimeric or tetrameric structure and experimental evidence for only one transport protein involved. Chenu C, Berteloot A. J Membr Biol; 1993 Mar 15; 132(2):95-113. PubMed ID: 8496949 [Abstract] [Full Text] [Related]
19. Identification of Na+,Pi-binding protein in kidney and intestinal brush-border membranes. Debiec H, Lorenc R. Biochem J; 1988 Oct 01; 255(1):185-91. PubMed ID: 3196312 [Abstract] [Full Text] [Related]