These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
63 related items for PubMed ID: 6466718
1. [Possible determination of the structural organization of bacterial and animal rhodopsins by the hydrophobicity of amino acid residues]. Tarakhovskiĭ IuS. Biofizika; 1984; 29(3):383-8. PubMed ID: 6466718 [Abstract] [Full Text] [Related]
5. Amino acid residues responsible for the meta-III decay rates in rod and cone visual pigments. Kuwayama S, Imai H, Morizumi T, Shichida Y. Biochemistry; 2005 Feb 15; 44(6):2208-15. PubMed ID: 15697246 [Abstract] [Full Text] [Related]
6. Structure determination of the fourth cytoplasmic loop and carboxyl terminal domain of bovine rhodopsin. Yeagle PL, Alderfer JL, Albert AD. Mol Vis; 1996 Dec 29; 2():12. PubMed ID: 9238089 [Abstract] [Full Text] [Related]
7. Mutagenic mapping of helical structures in the transmembrane segments of the yeast alpha-factor receptor. Martin NP, Celić A, Dumont ME. J Mol Biol; 2002 Apr 12; 317(5):765-88. PubMed ID: 11955023 [Abstract] [Full Text] [Related]
8. [Purification and partial sequence of a hydrophobic polypeptide from BNPS-skatole cleaved bovine rhodopsin]. Pellicone C, Bouillon P, Virmaux N. C R Seances Acad Sci D; 1980 Feb 25; 290(8):567-9. PubMed ID: 6767558 [Abstract] [Full Text] [Related]
9. [Visual rhodopsin. III. Complete amino acid sequence and topography in a membrane]. Ovchinnikov IuA, Abdulaev NG, Feĭgina MIu, Artamonov ID, Bogachuk AS. Bioorg Khim; 1983 Oct 25; 9(10):1331-40. PubMed ID: 6679757 [Abstract] [Full Text] [Related]
10. Structural mimicry in G protein-coupled receptors: implications of the high-resolution structure of rhodopsin for structure-function analysis of rhodopsin-like receptors. Ballesteros JA, Shi L, Javitch JA. Mol Pharmacol; 2001 Jul 25; 60(1):1-19. PubMed ID: 11408595 [Abstract] [Full Text] [Related]
11. NMR structure of the J-domain and the Gly/Phe-rich region of the Escherichia coli DnaJ chaperone. Pellecchia M, Szyperski T, Wall D, Georgopoulos C, Wüthrich K. J Mol Biol; 1996 Jul 12; 260(2):236-50. PubMed ID: 8764403 [Abstract] [Full Text] [Related]
12. Non-alpha-helical elements modulate polytopic membrane protein architecture. Riek RP, Rigoutsos I, Novotny J, Graham RM. J Mol Biol; 2001 Feb 16; 306(2):349-62. PubMed ID: 11237604 [Abstract] [Full Text] [Related]
13. Structural features and light-dependent changes in the sequence 306-322 extending from helix VII to the palmitoylation sites in rhodopsin: a site-directed spin-labeling study. Altenbach C, Cai K, Khorana HG, Hubbell WL. Biochemistry; 1999 Jun 22; 38(25):7931-7. PubMed ID: 10387035 [Abstract] [Full Text] [Related]
14. Three-dimensional models of histamine H3 receptor antagonist complexes and their pharmacophore. Axe FU, Bembenek SD, Szalma S. J Mol Graph Model; 2006 May 22; 24(6):456-64. PubMed ID: 16386444 [Abstract] [Full Text] [Related]
15. [Electrophoretic study of products of wall-eyed pollock and bovine rhodopsins fragmented by papain]. Korchagin VP, Shukoliukov SA, Dikarev VP. Biokhimiia; 1979 Aug 22; 44(8):1472-7. PubMed ID: 497292 [Abstract] [Full Text] [Related]
16. Substitution of Pro206 and Ser86 residues in the retinal binding pocket of Anabaena sensory rhodopsin is not sufficient for proton pumping function. Choi AR, Kim SY, Yoon SR, Bae K, Jung KH. J Microbiol Biotechnol; 2007 Jan 22; 17(1):138-45. PubMed ID: 18051365 [Abstract] [Full Text] [Related]
17. Electrostatic potential at the retinal of three archaeal rhodopsins: implications for their different absorption spectra. Kloppmann E, Becker T, Ullmann GM. Proteins; 2005 Dec 01; 61(4):953-65. PubMed ID: 16247786 [Abstract] [Full Text] [Related]
18. [Topology of bovine rhodopsin in discal membranes of photoreceptors]. Pellicone C, Nullans G, Leininger D, Virmaux N. C R Seances Acad Sci III; 1983 Jan 10; 296(1):7-10. PubMed ID: 6404513 [Abstract] [Full Text] [Related]
19. X-ray diffraction of heavy-atom labelled two-dimensional crystals of rhodopsin identifies the position of cysteine 140 in helix 3 and cysteine 316 in helix 8. Mielke T, Villa C, Edwards PC, Schertler GF, Heyn MP. J Mol Biol; 2002 Feb 22; 316(3):693-709. PubMed ID: 11866527 [Abstract] [Full Text] [Related]
20. 3D structural model of the G-protein-coupled cannabinoid CB2 receptor. Xie XQ, Chen JZ, Billings EM. Proteins; 2003 Nov 01; 53(2):307-19. PubMed ID: 14517981 [Abstract] [Full Text] [Related] Page: [Next] [New Search]