These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


178 related items for PubMed ID: 6469982

  • 1. Two distinct mechanisms for taurocholate uptake in subcellular fractions from rat liver.
    Simion FA, Fleischer B, Fleischer S.
    J Biol Chem; 1984 Sep 10; 259(17):10814-22. PubMed ID: 6469982
    [Abstract] [Full Text] [Related]

  • 2. Subcellular distribution of bile acids, bile salts, and taurocholate binding sites in rat liver.
    Simion FA, Fleischer B, Fleischer S.
    Biochemistry; 1984 Dec 18; 23(26):6459-66. PubMed ID: 6529562
    [Abstract] [Full Text] [Related]

  • 3. Bile acid transport into hepatocyte smooth endoplasmic reticulum vesicles is mediated by microsomal epoxide hydrolase, a membrane protein exhibiting two distinct topological orientations.
    Alves C, von Dippe P, Amoui M, Levy D.
    J Biol Chem; 1993 Sep 25; 268(27):20148-55. PubMed ID: 8376374
    [Abstract] [Full Text] [Related]

  • 4. Hepatocellular transport of bile acids. Evidence for distinct subcellular localizations of electrogenic and ATP-dependent taurocholate transport in rat hepatocytes.
    Kast C, Stieger B, Winterhalter KH, Meier PJ.
    J Biol Chem; 1994 Feb 18; 269(7):5179-86. PubMed ID: 8106499
    [Abstract] [Full Text] [Related]

  • 5. Characterizing mechanisms of hepatic bile acid transport utilizing isolated membrane vesicles.
    Boyer JL, Meier PJ.
    Methods Enzymol; 1990 Feb 18; 192():517-33. PubMed ID: 2074806
    [Abstract] [Full Text] [Related]

  • 6. Taurocholate transport by rat liver canalicular membrane vesicles. Evidence for the presence of an Na+-independent transport system.
    Inoue M, Kinne R, Tran T, Arias IM.
    J Clin Invest; 1984 Mar 18; 73(3):659-63. PubMed ID: 6707198
    [Abstract] [Full Text] [Related]

  • 7. A new method for the rapid isolation of basolateral plasma membrane vesicles from rat liver. Characterization, validation, and bile acid transport studies.
    Blitzer BL, Donovan CB.
    J Biol Chem; 1984 Jul 25; 259(14):9295-301. PubMed ID: 6746649
    [Abstract] [Full Text] [Related]

  • 8. Direct determination of the driving forces for taurocholate uptake into rat liver plasma membrane vesicles.
    Duffy MC, Blitzer BL, Boyer JL.
    J Clin Invest; 1983 Oct 25; 72(4):1470-81. PubMed ID: 6630516
    [Abstract] [Full Text] [Related]

  • 9. Multispecificity of Na+-dependent taurocholate uptake in basolateral (sinusoidal) rat liver plasma membrane vesicles.
    Zimmerli B, Valantinas J, Meier PJ.
    J Pharmacol Exp Ther; 1989 Jul 25; 250(1):301-8. PubMed ID: 2746502
    [Abstract] [Full Text] [Related]

  • 10. Mechanism of secretion of biliary lipids. I. Role of bile canalicular and microsomal membranes in the synthesis and transport of biliary lecithin and cholesterol.
    Gregory DH, Vlahcevic ZR, Schatzki P, Swell L.
    J Clin Invest; 1975 Jan 25; 55(1):105-14. PubMed ID: 1109174
    [Abstract] [Full Text] [Related]

  • 11. ATP-dependent transport of the linear renin-inhibiting peptide EMD 51921 by canalicular plasma membrane vesicles of rat liver: evidence of drug-stimulatable ATP-hydrolysis.
    Ziegler K, Kolac C, Ising W.
    Biochim Biophys Acta; 1994 Dec 30; 1196(2):209-17. PubMed ID: 7841185
    [Abstract] [Full Text] [Related]

  • 12. cAMP increases liver Na+-taurocholate cotransport by translocating transporter to plasma membranes.
    Mukhopadhayay S, Ananthanarayanan M, Stieger B, Meier PJ, Suchy FJ, Anwer MS.
    Am J Physiol; 1997 Oct 30; 273(4):G842-8. PubMed ID: 9357825
    [Abstract] [Full Text] [Related]

  • 13. Monensin action on the Golgi complex in perfused rat liver: evidence against bile salt vesicular transport.
    Reynier MO, Abou Hashieh I, Crotte C, Carbuccia N, Richard B, Gérolami A.
    Gastroenterology; 1992 Jun 30; 102(6):2024-32. PubMed ID: 1587420
    [Abstract] [Full Text] [Related]

  • 14. Taurocholate transport by basolateral plasma membrane vesicles isolated from developing rat liver.
    Suchy FJ, Courchene SM, Blitzer BL.
    Am J Physiol; 1985 Jun 30; 248(6 Pt 1):G648-54. PubMed ID: 2408482
    [Abstract] [Full Text] [Related]

  • 15. Mechanisms of hepatic transport of cyclosporin A: an explanation for its cholestatic action?
    Fricker G, Fahr A.
    Yale J Biol Med; 1997 Jun 30; 70(4):379-90. PubMed ID: 9626758
    [Abstract] [Full Text] [Related]

  • 16. Sodium ion-coupled uptake of taurocholate by rat-liver plasma membrane vesicles.
    Ruifrok PG, Meijer DK.
    Liver; 1982 Mar 30; 2(1):28-34. PubMed ID: 7176836
    [Abstract] [Full Text] [Related]

  • 17. Kinetic and energetic aspects of the inhibition of taurocholate uptake by Na+-dependent amino acids: studies in rat liver plasma membrane vesicles.
    Blitzer BL, Bueler RL.
    Am J Physiol; 1985 Jul 30; 249(1 Pt 1):G120-4. PubMed ID: 4014461
    [Abstract] [Full Text] [Related]

  • 18. Mechanisms of taurocholate transport in canalicular and basolateral rat liver plasma membrane vesicles. Evidence for an electrogenic canalicular organic anion carrier.
    Meier PJ, St Meier-Abt A, Barrett C, Boyer JL.
    J Biol Chem; 1984 Aug 25; 259(16):10614-22. PubMed ID: 6469975
    [Abstract] [Full Text] [Related]

  • 19. Taurocholate transport by basolateral plasma membrane vesicles isolated from human liver.
    Novak DA, Ryckman FC, Suchy FJ.
    Hepatology; 1989 Oct 25; 10(4):447-53. PubMed ID: 2777205
    [Abstract] [Full Text] [Related]

  • 20. Bile acid binding proteins in hepatocellular membranes of newborn and adult rats. Identification of transport proteins with azidobenzamidotauro[14C]cholate ([14C]ABATC).
    Ziegler K, Frimmer M, Müllner S, Fasold H.
    Biochim Biophys Acta; 1989 Apr 14; 980(2):161-8. PubMed ID: 2930783
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.