These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


191 related items for PubMed ID: 6470560

  • 1. Hydrogen ion secretion by the distal nephron in the rat: effect of potassium.
    Kornandakieti C, Tannen RL.
    J Lab Clin Med; 1984 Sep; 104(3):293-303. PubMed ID: 6470560
    [Abstract] [Full Text] [Related]

  • 2. Response of the renal K+-conserving mechanism to kaliuretic stimuli: evidence for a direct kaliuretic effect by furosemide.
    Tannen RL, Gerrits L.
    J Lab Clin Med; 1986 Feb; 107(2):176-84. PubMed ID: 3944497
    [Abstract] [Full Text] [Related]

  • 3. Hydrogen ion secretion by the rat distal nephron: adaptation to chronic alkali and acid ingestion.
    Kornandakieti C, Grekin R, Tannen RL.
    Am J Physiol; 1983 Sep; 245(3):F349-58. PubMed ID: 6614174
    [Abstract] [Full Text] [Related]

  • 4. Effect of potassium on renal acidification and acid-base homeostasis.
    Tannen RL.
    Semin Nephrol; 1987 Sep; 7(3):263-73. PubMed ID: 2825318
    [Abstract] [Full Text] [Related]

  • 5. H+ transport by the aldosterone-deficient rat distal nephron.
    Kornandakieti C, Tannen RL.
    Kidney Int; 1984 Apr; 25(4):629-35. PubMed ID: 6090755
    [Abstract] [Full Text] [Related]

  • 6. Effect of furosemide on urinary acidification in distal renal tubular acidosis.
    Rastogi SP, Crawford C, Wheeler R, Flanigan W, Arruda JA.
    J Lab Clin Med; 1984 Aug; 104(2):271-82. PubMed ID: 6747443
    [Abstract] [Full Text] [Related]

  • 7. Demonstration of an intrinsic renal adaptation for K+ conservation in short-term K+ depletion.
    Ornt DB, Tannen RL.
    Am J Physiol; 1983 Sep; 245(3):F329-38. PubMed ID: 6614171
    [Abstract] [Full Text] [Related]

  • 8. Characterization of acidification by the isolated perfused rat kidney: evidence for adaptation by the distal nephron to a high bicarbonate diet.
    Terao N, Tannen RL.
    Kidney Int; 1981 Jul; 20(1):36-42. PubMed ID: 6272015
    [Abstract] [Full Text] [Related]

  • 9. Production of maximally acid urine by the isolated dog kidney.
    Kleinman JG, Ellis B, Teresi LM, Itskovitz HD.
    J Lab Clin Med; 1979 Oct; 94(4):600-7. PubMed ID: 39105
    [Abstract] [Full Text] [Related]

  • 10. Increased endothelin activity mediates augmented distal nephron acidification induced by dietary protein.
    Khanna A, Simoni J, Hacker C, Duran MJ, Wesson DE.
    J Am Soc Nephrol; 2004 Sep; 15(9):2266-75. PubMed ID: 15339976
    [Abstract] [Full Text] [Related]

  • 11. A micropuncture study on the renal site of action of ICI 206,970, a unique eukalemic diuretic.
    Johnston PA, Kau ST.
    J Pharmacol Exp Ther; 1993 Feb; 264(2):604-8. PubMed ID: 8437111
    [Abstract] [Full Text] [Related]

  • 12. A micropuncture study of potassium excretion by the remnant kidney.
    Bank N, Aynedjian HS.
    J Clin Invest; 1973 Jun; 52(6):1480-90. PubMed ID: 4703232
    [Abstract] [Full Text] [Related]

  • 13. H+-ATPase activity in selective disruption of H+-K+-ATPase alpha 1 gene of mice under normal and K-depleted conditions.
    Nakamura S.
    J Lab Clin Med; 2006 Jan; 147(1):45-51. PubMed ID: 16443004
    [Abstract] [Full Text] [Related]

  • 14. In vivo evidence of impaired solute transport by the thick ascending limb in potassium-depleted rats.
    Gutsche HU, Peterson LN, Levine DZ.
    J Clin Invest; 1984 Apr; 73(4):908-16. PubMed ID: 6707211
    [Abstract] [Full Text] [Related]

  • 15. Potassium restriction, high protein intake, and metabolic acidosis increase expression of the glutamine transporter SNAT3 (Slc38a3) in mouse kidney.
    Busque SM, Wagner CA.
    Am J Physiol Renal Physiol; 2009 Aug; 297(2):F440-50. PubMed ID: 19458124
    [Abstract] [Full Text] [Related]

  • 16. Measurement of intracellular pH in suspensions of renal tubules from potassium-depleted rats.
    Schoolwerth AC, Culpepper RM.
    Miner Electrolyte Metab; 1990 Aug; 16(4):191-6. PubMed ID: 2277602
    [Abstract] [Full Text] [Related]

  • 17. [Electrolyte and acid-base balance disorders in advanced chronic kidney disease].
    Alcázar Arroyo R.
    Nefrologia; 2008 Aug; 28 Suppl 3():87-93. PubMed ID: 19018744
    [Abstract] [Full Text] [Related]

  • 18. The behavior of carbenicillin as a nonreabsorbable anion.
    Lipner HI, Ruzany F, Dasgupta M, Lief PD, Bank N.
    J Lab Clin Med; 1975 Aug; 86(2):183-94. PubMed ID: 239076
    [Abstract] [Full Text] [Related]

  • 19. Relationship of phosphate-dependent glutaminase activity to ammonia excretion in potassium deficiency and acidosis.
    Fraley DS, Adler S, Rankin B, Curthoys N, Zett B.
    Miner Electrolyte Metab; 1985 Aug; 11(3):140-9. PubMed ID: 4010646
    [Abstract] [Full Text] [Related]

  • 20. Adaptive changes in renal acidification in response to chronic respiratory acidosis.
    Tannen RL, Hamid B.
    Am J Physiol; 1985 Apr; 248(4 Pt 2):F492-9. PubMed ID: 3985155
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.