These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Visual response properties of neurons in four extrastriate visual areas of the owl monkey (Aotus trivirgatus): a quantitative comparison of medial, dorsomedial, dorsolateral, and middle temporal areas. Baker JF, Petersen SE, Newsome WT, Allman JM. J Neurophysiol; 1981 Mar; 45(3):397-416. PubMed ID: 7218008 [Abstract] [Full Text] [Related]
8. Relation of cortical areas MT and MST to pursuit eye movements. III. Interaction with full-field visual stimulation. Komatsu H, Wurtz RH. J Neurophysiol; 1988 Aug; 60(2):621-44. PubMed ID: 3171645 [Abstract] [Full Text] [Related]
9. Ventral intraparietal area of the macaque: anatomic location and visual response properties. Colby CL, Duhamel JR, Goldberg ME. J Neurophysiol; 1993 Mar; 69(3):902-14. PubMed ID: 8385201 [Abstract] [Full Text] [Related]
10. Center-surround interactions in the middle temporal visual area of the owl monkey. Born RT. J Neurophysiol; 2000 Nov; 84(5):2658-69. PubMed ID: 11068007 [Abstract] [Full Text] [Related]
11. Comparison of neuronal selectivity for stimulus speed, length, and contrast in the prestriate visual cortical areas V4 and MT of the macaque monkey. Cheng K, Hasegawa T, Saleem KS, Tanaka K. J Neurophysiol; 1994 Jun; 71(6):2269-80. PubMed ID: 7931516 [Abstract] [Full Text] [Related]
12. Neural responses to visual texture patterns in middle temporal area of the macaque monkey. Olavarria JF, DeYoe EA, Knierim JJ, Fox JM, van Essen DC. J Neurophysiol; 1992 Jul; 68(1):164-81. PubMed ID: 1517821 [Abstract] [Full Text] [Related]
13. Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields. Schiller PH, Finlay BL, Volman SF. J Neurophysiol; 1976 Nov; 39(6):1288-319. PubMed ID: 825621 [Abstract] [Full Text] [Related]
14. Neural activity in cortical area MST of alert monkey during ocular following responses. Kawano K, Shidara M, Watanabe Y, Yamane S. J Neurophysiol; 1994 Jun; 71(6):2305-24. PubMed ID: 7931519 [Abstract] [Full Text] [Related]
15. Direction selectivity of simple cells in cat striate cortex to moving light bars. II. Relation to moving dark bar responses. Yamane S, Maske R, Bishop PO. Exp Brain Res; 1985 Jun; 57(3):523-36. PubMed ID: 3979495 [Abstract] [Full Text] [Related]
16. Receptive field organization of complex cells in the cat's striate cortex. Movshon JA, Thompson ID, Tolhurst DJ. J Physiol; 1978 Oct; 283():79-99. PubMed ID: 722592 [Abstract] [Full Text] [Related]
17. Periodic excitability changes across the receptive fields of complex cells in the striate and parastriate cortex of the cat. Pollen DA, Ronner SF. J Physiol; 1975 Mar; 245(3):667-97. PubMed ID: 1142223 [Abstract] [Full Text] [Related]
18. Responses to visual contours: spatio-temporal aspects of excitation in the receptive fields of simple striate neurones. Bishop PO, Coombs JS, Henry GH. J Physiol; 1971 Dec; 219(3):625-57. PubMed ID: 5157596 [Abstract] [Full Text] [Related]
19. Visual receptive-field properties of cells in area 18 of cat's cerebral cortex before and after acute lesions in area 17. Dreher B, Cottee LJ. J Neurophysiol; 1975 Jul; 38(4):735-50. PubMed ID: 1159462 [Abstract] [Full Text] [Related]
20. Strobe rearing reduces direction selectivity in area 17 by altering spatiotemporal receptive-field structure. Humphrey AL, Saul AB. J Neurophysiol; 1998 Dec; 80(6):2991-3004. PubMed ID: 9862901 [Abstract] [Full Text] [Related] Page: [Next] [New Search]