These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


175 related items for PubMed ID: 6482502

  • 21. Sampling membrane potential, membrane resistance and electrode resistance with a glass electrode impaled into a single cell.
    Schiebe M, Jaeger U.
    J Neurosci Methods; 1980 Apr; 2(2):191-202. PubMed ID: 7392671
    [Abstract] [Full Text] [Related]

  • 22. A micro-electrode amplifier with an infinite resistance current source for intracellular measurements of membrane potential and resistance changes under current clamp.
    Muijser H.
    Experientia; 1979 Jul 15; 35(7):912-3. PubMed ID: 477853
    [Abstract] [Full Text] [Related]

  • 23. Coincident recording and stimulation of single and multiple neuronal activity with one extracellular microelectrode.
    Hentall ID.
    J Neurosci Methods; 1991 Dec 15; 40(2-3):181-91. PubMed ID: 1800855
    [Abstract] [Full Text] [Related]

  • 24. Single-microelectrode voltage clamp measurements of pancreatic beta-cell membrane ionic currents in situ.
    Rojas E, Stokes CL, Mears D, Atwater I.
    J Membr Biol; 1995 Jan 15; 143(1):65-77. PubMed ID: 7714889
    [Abstract] [Full Text] [Related]

  • 25. Low resting potentials in single isolated heart cells due to membrane damage by the recording microelectrode.
    Pelzer D, Trube G, Piper HM.
    Pflugers Arch; 1984 Feb 15; 400(2):197-9. PubMed ID: 6718227
    [Abstract] [Full Text] [Related]

  • 26. An assessment of the double sucrose-gap voltage clamp technique as applied to frog atrial muscle.
    Tarr M, Trank JW.
    Biophys J; 1974 Sep 15; 14(9):627-43. PubMed ID: 4547136
    [Abstract] [Full Text] [Related]

  • 27. Membrane currents in the rabbit sinoatrial node cell as studied by the double microelectrode method.
    Noma A, Irisawa H.
    Pflugers Arch; 1976 Jun 29; 364(1):45-52. PubMed ID: 986617
    [Abstract] [Full Text] [Related]

  • 28. The use of metal microelectrodes in broad-band recording.
    DuPont JS, DeJong C.
    TIT J Life Sci; 1975 Jun 29; 5(3-4):69-76. PubMed ID: 1231060
    [Abstract] [Full Text] [Related]

  • 29. Application of active electrode compensation to perform continuous voltage-clamp recordings with sharp microelectrodes.
    Gómez-González JF, Destexhe A, Bal T.
    J Neural Eng; 2014 Oct 29; 11(5):056028. PubMed ID: 25246226
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Measurement of GABA-evoked conductance changes of lobster muscle fibres by a three-microelectrode voltage clamp technique.
    Constanti A, Smart TG.
    Proc R Soc Lond B Biol Sci; 1982 Jun 22; 215(1200):343-64. PubMed ID: 6127711
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Ion-sensitive microelectrode system with short response time.
    Mückenhoff K, Schreiber S, De Santis A, Okada Y, Scheid P.
    J Neurosci Methods; 1994 Mar 22; 51(2):147-53. PubMed ID: 8051946
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. Access resistance and space clamp problems associated with whole-cell patch clamping.
    Armstrong CM, Gilly WF.
    Methods Enzymol; 1992 Mar 22; 207():100-22. PubMed ID: 1528114
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Interaction of apical and basal membrane ion channels underlies electroreception in ampullary epithelia of skates.
    Lu J, Fishman HM.
    Biophys J; 1994 Oct 22; 67(4):1525-33. PubMed ID: 7529586
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.