These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
109 related items for PubMed ID: 6490326
1. 'Regulation' of capillary haematocrit. Gaehtgens P. Int J Microcirc Clin Exp; 1984; 3(2):147-60. PubMed ID: 6490326 [Abstract] [Full Text] [Related]
2. Distribution of flow and red cell flux in the microcirculation. Gaehtgens P. Scand J Clin Lab Invest Suppl; 1981; 156():83-7. PubMed ID: 7034151 [Abstract] [Full Text] [Related]
3. Increase in capillary blood flow and relative haematocrit in rabbit skeletal muscle following acute normovolaemic anaemia. Lindbom L, Mirhashemi S, Intaglietta M, Arfors KE. Acta Physiol Scand; 1988 Dec; 134(4):503-12. PubMed ID: 3250219 [Abstract] [Full Text] [Related]
4. Determinants of regional myocardial oxygen supply in the left ventricle. An experimental study in the in situ working canine heart. Eliasen P. Dan Med Bull; 1987 Dec; 34(6):277-89. PubMed ID: 3325232 [Abstract] [Full Text] [Related]
7. Model experiments on the effect of bifurcations on capillary blood flow and oxygen transport. Gaehtgens P, Pries A, Albrecht KH. Pflugers Arch; 1979 Jun 12; 380(2):115-20. PubMed ID: 573438 [Abstract] [Full Text] [Related]
10. The role of blood coagulability and axial streaming of erythrocytes in determining F cells-value and TPR. Tanos B. Acta Physiol Acad Sci Hung; 1979 Jun 12; 53(1):1-7. PubMed ID: 495119 [Abstract] [Full Text] [Related]
12. Microvascular hematocrit and red cell flow in resting and contracting striated muscle. Klitzman B, Duling BR. Am J Physiol; 1979 Oct 12; 237(4):H481-90. PubMed ID: 495734 [Abstract] [Full Text] [Related]
13. Microrheology of erythrocytes, blood viscosity, and the distribution of blood flow in the microcirculation. Schmid-Schönbein H. Int Rev Physiol; 1976 Oct 12; 9():1-62. PubMed ID: 977248 [Abstract] [Full Text] [Related]
14. The effect of the endothelial-cell glycocalyx on the motion of red blood cells through capillaries. Damiano ER. Microvasc Res; 1998 Jan 12; 55(1):77-91. PubMed ID: 9473411 [Abstract] [Full Text] [Related]
15. Coupling of muscle metabolism and muscle blood flow in capillary units during contraction. Murrant CL, Sarelius IH. Acta Physiol Scand; 2000 Apr 12; 168(4):531-41. PubMed ID: 10759590 [Abstract] [Full Text] [Related]
16. Temporal profile of rat skeletal muscle capillary haemodynamics during recovery from contractions. Ferreira LF, Padilla DJ, Musch TI, Poole DC. J Physiol; 2006 Jun 15; 573(Pt 3):787-97. PubMed ID: 16581868 [Abstract] [Full Text] [Related]
17. Influence of vessel diameter on red cell distribution at microvascular bifurcations. Carr RT, Wickham LL. Microvasc Res; 1991 Mar 15; 41(2):184-96. PubMed ID: 2051959 [Abstract] [Full Text] [Related]
18. Dynamics of erythrocyte motion in filtration tests and in vivo flow. Cokelet GR. Scand J Clin Lab Invest Suppl; 1981 Mar 15; 156():77-82. PubMed ID: 6948404 [Abstract] [Full Text] [Related]
19. Capillary flow impairment and functional capillary density. Tsai AG, Friesenecker B, Intaglietta M. Int J Microcirc Clin Exp; 1995 Mar 15; 15(5):238-43. PubMed ID: 8852621 [Abstract] [Full Text] [Related]
20. Dependence of cerebral capillary hematocrit on red cell flow separation at bifurcations: a computer simulation study. Hudetz AG. Adv Exp Med Biol; 1990 Mar 15; 277():31-4. PubMed ID: 2096637 [Abstract] [Full Text] [Related] Page: [Next] [New Search]