These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


245 related items for PubMed ID: 6497378

  • 1. Regulation of pyruvate oxidation in blowfly flight muscle mitochondria: requirement for ADP.
    Bulos BA, Thomas BJ, Shukla SP, Sacktor B.
    Arch Biochem Biophys; 1984 Nov 01; 234(2):382-93. PubMed ID: 6497378
    [Abstract] [Full Text] [Related]

  • 2. The control of tricarboxylate-cycle oxidations in blowfly flight muscle. The steady-state concentrations of citrate, isocitrate 2-oxoglutarate and malate in flight muscle and isolated mitochondria.
    Johnson RN, Hansford RG.
    Biochem J; 1975 Mar 01; 146(3):527-35. PubMed ID: 1147907
    [Abstract] [Full Text] [Related]

  • 3. Control of pyruvate dehydrogenase activity in intact cardiac mitochondria. Regulation of the inactivation and activation of the dehydrogenase.
    Chiang PK, Sacktor B.
    J Biol Chem; 1975 May 10; 250(9):3399-408. PubMed ID: 123530
    [Abstract] [Full Text] [Related]

  • 4. The control of tricarboxylate-cycle oxidations in blowfly flight muscle. The oxidized and reduced nicotinamide-adenine dinucleotide content of flight muscle and isolated mitochondria, the adenosine triphosphate and adenosine diphosphate content of mitochondria, and the energy status of the mitochondria during controlled respiration.
    Hansford RG.
    Biochem J; 1975 Mar 10; 146(3):537-47. PubMed ID: 167720
    [Abstract] [Full Text] [Related]

  • 5. The steady state concentrations of coenzyme A-SH and coenzyme A thioester, citrate, and isocitrate during tricarboxylate cycle oxidations in rabbit heart mitochondria.
    Hansford RG, Johnson RN.
    J Biol Chem; 1975 Nov 10; 250(21):8361-75. PubMed ID: 1194259
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. The nature and control of the tricarboxylate cycle in beetle flight muscle.
    Hansford RG, Johnson RN.
    Biochem J; 1975 Jun 10; 148(3):389-401. PubMed ID: 1200985
    [Abstract] [Full Text] [Related]

  • 8. The control of tricarboxylate-cycle of oxidations in blowfly flight muscle. The steady-state concentrations of coenzyme A, acetyl-coenzyme A and succinyl-coenzyme A in flight muscle and isolated mitochondria.
    Hansford RG.
    Biochem J; 1974 Sep 10; 142(3):509-19. PubMed ID: 4464839
    [Abstract] [Full Text] [Related]

  • 9. Changes in intramitochondrial adenine nucleotides in blowfly flight-muscle mitochondria.
    Danks SM, Chappell JB.
    Biochem J; 1974 Aug 10; 142(2):353-8. PubMed ID: 4374197
    [Abstract] [Full Text] [Related]

  • 10. The nature of controlled respiration and its relationship to protonmotive force and proton conductance in blowfly flight-muscle mitochondria.
    Johnson RN, Hansford RG.
    Biochem J; 1977 May 15; 164(2):305-22. PubMed ID: 195584
    [Abstract] [Full Text] [Related]

  • 11. Metabolism of rat brain mitochondria. Studies on the potassium ion-stimulated oxidation of pyruvate.
    Nicklas WJ, Clark JB, Williamson JR.
    Biochem J; 1971 Jun 15; 123(1):83-95. PubMed ID: 5128666
    [Abstract] [Full Text] [Related]

  • 12. Stimulatory effect of ADP, ATP, NAD(P) on pyruvate production from malate by uncoupled human placental mitochondria.
    Swierczyński J, Aleksandrowicz Z, Zelewski L.
    Biochem Med Metab Biol; 1987 Oct 15; 38(2):156-64. PubMed ID: 3675918
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Sensitivity of oligomycin-inhibited respiration of isolated rat liver mitochondria to perfluidone, a fluorinated arylalkylsulfonamide.
    Olorunsogo OO, Malomo SO.
    Toxicology; 1985 Jun 14; 35(3):231-40. PubMed ID: 3160138
    [Abstract] [Full Text] [Related]

  • 15. The role of pyruvate in neuronal calcium homeostasis. Effects on intracellular calcium pools.
    Villalba M, Martínez-Serrano A, Gómez-Puertas P, Blanco P, Börner C, Villa A, Casado M, Giménez C, Pereira R, Bogonez E.
    J Biol Chem; 1994 Jan 28; 269(4):2468-76. PubMed ID: 7507925
    [Abstract] [Full Text] [Related]

  • 16. The ATP/ADP-antiporter is involved in the uncoupling effect of fatty acids on mitochondria.
    Andreyev AYu, Bondareva TO, Dedukhova VI, Mokhova EN, Skulachev VP, Tsofina LM, Volkov NI, Vygodina TV.
    Eur J Biochem; 1989 Jul 01; 182(3):585-92. PubMed ID: 2546761
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. The activation of non-phosphorylating electron transport by adenine nucleotides in Jerusalem-artichoke (Helianthus tuberosus) mitochondria.
    Sotthibandhu R, Palmer JM.
    Biochem J; 1975 Dec 01; 152(3):637-45. PubMed ID: 1227506
    [Abstract] [Full Text] [Related]

  • 19. Characterization of the effects of Ca2+ on the intramitochondrial Ca2+-sensitive dehydrogenases within intact rat-kidney mitochondria.
    McCormack JG, Bromidge ES, Dawes NJ.
    Biochim Biophys Acta; 1988 Jul 27; 934(3):282-92. PubMed ID: 2840116
    [Abstract] [Full Text] [Related]

  • 20. Calcium inhibition of the NAD+-linked isocitrate dehydrogenase from blowfly flight muscle mitochondria.
    Bulos BA, Thomas BJ, Sacktor B.
    J Biol Chem; 1984 Aug 25; 259(16):10232-7. PubMed ID: 6469961
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.