These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


900 related items for PubMed ID: 6498833

  • 1. Contributions of glycolysis and oxidative phosphorylation to adenosine 5'-triphosphate production in AS-30D hepatoma cells.
    Nakashima RA, Paggi MG, Pedersen PL.
    Cancer Res; 1984 Dec; 44(12 Pt 1):5702-6. PubMed ID: 6498833
    [Abstract] [Full Text] [Related]

  • 2. Substrate oxidation and ATP supply in AS-30D hepatoma cells.
    Rodríguez-Enríquez S, Torres-Márquez ME, Moreno-Sánchez R.
    Arch Biochem Biophys; 2000 Mar 01; 375(1):21-30. PubMed ID: 10683245
    [Abstract] [Full Text] [Related]

  • 3. Control of cellular proliferation by modulation of oxidative phosphorylation in human and rodent fast-growing tumor cells.
    Rodríguez-Enríquez S, Vital-González PA, Flores-Rodríguez FL, Marín-Hernández A, Ruiz-Azuara L, Moreno-Sánchez R.
    Toxicol Appl Pharmacol; 2006 Sep 01; 215(2):208-17. PubMed ID: 16580038
    [Abstract] [Full Text] [Related]

  • 4. Purification and characterization of a bindable form of mitochondrial bound hexokinase from the highly glycolytic AS-30D rat hepatoma cell line.
    Nakashima RA, Paggi MG, Scott LJ, Pedersen PL.
    Cancer Res; 1988 Feb 15; 48(4):913-9. PubMed ID: 3338084
    [Abstract] [Full Text] [Related]

  • 5. Chronic ethanol consumption decreases mitochondrial and glycolytic production of ATP in liver.
    Young TA, Bailey SM, Van Horn CG, Cunningham CC.
    Alcohol Alcohol; 2006 Feb 15; 41(3):254-60. PubMed ID: 16571619
    [Abstract] [Full Text] [Related]

  • 6. Interaction of Na+ and K+ transport with aerobic energy metabolism in slices of Morris hepatoma 3924A.
    Galeotti T, van Rossum GD, Russo MA, Palombini G.
    Cancer Res; 1976 Nov 15; 36(11 Pt 1):4175-84. PubMed ID: 184927
    [Abstract] [Full Text] [Related]

  • 7. [Kinetics of oxygen consumption, luminescence of pyridine nucleotides and the cyanine dye 3',3'-diethylthiodicarbocyanine iodide after energizing Ehrlich ascites carcinoma cells with glucose].
    Zinchenko VP, Teplova VV, Evtodienko IuV.
    Biull Eksp Biol Med; 1982 Nov 15; 94(11):69-72. PubMed ID: 7150743
    [Abstract] [Full Text] [Related]

  • 8. Inhibition of energy-producing pathways of HepG2 cells by 3-bromopyruvate.
    Pereira da Silva AP, El-Bacha T, Kyaw N, dos Santos RS, da-Silva WS, Almeida FC, Da Poian AT, Galina A.
    Biochem J; 2009 Feb 01; 417(3):717-26. PubMed ID: 18945211
    [Abstract] [Full Text] [Related]

  • 9. Comparison of the effect of mitochondrial inhibitors on mitochondrial membrane potential in two different cell lines using flow cytometry and spectrofluorometry.
    Kalbácová M, Vrbacký M, Drahota Z, Melková Z.
    Cytometry A; 2003 Apr 01; 52(2):110-6. PubMed ID: 12655654
    [Abstract] [Full Text] [Related]

  • 10. Substrate-dependent effects of calcium on rat retinal mitochondrial respiration: physiological and toxicological studies.
    Medrano CJ, Fox DA.
    Toxicol Appl Pharmacol; 1994 Apr 01; 125(2):309-21. PubMed ID: 8171438
    [Abstract] [Full Text] [Related]

  • 11. Balancing of mitochondrial and glycolytic ATP production and of the ATP-consuming processes of Ehrlich mouse ascites tumour cells in a high phosphate medium.
    Schmidt H, Siems W, Müller M, Dumdey R, Jakstadt M, Rapoport SM.
    Biochem Int; 1989 Nov 01; 19(5):985-92. PubMed ID: 2635857
    [Abstract] [Full Text] [Related]

  • 12. Energy balance in rabbit reticulocytes and its control by adenine nucleotides.
    Augustin HW, Spengler V.
    Biomed Biochim Acta; 1983 Nov 01; 42(11-12):S223-8. PubMed ID: 6675695
    [Abstract] [Full Text] [Related]

  • 13. Significant increase of glycolytic flux in Torulopsis glabrata by inhibition of oxidative phosphorylation.
    Liu L, Li Y, Li H, Chen J.
    FEMS Yeast Res; 2006 Dec 01; 6(8):1117-29. PubMed ID: 16972982
    [Abstract] [Full Text] [Related]

  • 14. Dose-dependent inhibition of mitochondrial ATP synthase by 17 beta-estradiol.
    Massart F, Paolini S, Piscitelli E, Brandi ML, Solaini G.
    Gynecol Endocrinol; 2002 Oct 01; 16(5):373-7. PubMed ID: 12587531
    [Abstract] [Full Text] [Related]

  • 15. Relationship of mitochondrial function and cellular adenosine triphosphate levels to hematoporphyrin derivative-induced photosensitization in R3230AC mammary tumors.
    Hilf R, Murant RS, Narayanan U, Gibson SL.
    Cancer Res; 1986 Jan 01; 46(1):211-7. PubMed ID: 3940191
    [Abstract] [Full Text] [Related]

  • 16. Nature of enhanced mitochondrial oxidative metabolism by a calf blood extract.
    Kuninaka T, Senga Y, Senga H, Weiner M.
    J Cell Physiol; 1991 Jan 01; 146(1):148-55. PubMed ID: 1990015
    [Abstract] [Full Text] [Related]

  • 17. Pro-oxidant mitochondrial matrix-targeted ubiquinone MitoQ10 acts as anti-oxidant at retarded electron transport or proton pumping within Complex I.
    Plecitá-Hlavatá L, Jezek J, Jezek P.
    Int J Biochem Cell Biol; 2009 Jan 01; 41(8-9):1697-707. PubMed ID: 19433311
    [Abstract] [Full Text] [Related]

  • 18. Effect of antitumor diarylsulfonylureas on in vivo and in vitro mitochondrial structure and functions.
    Thakar JH, Chapin C, Berg RH, Ashmun RA, Houghton PJ.
    Cancer Res; 1991 Dec 01; 51(23 Pt 1):6286-91. PubMed ID: 1933889
    [Abstract] [Full Text] [Related]

  • 19. Energy substrate utilization in freshly isolated Morris Hepatoma 7777 cells.
    Mares-Perlman JA, Shrago E.
    Cancer Res; 1988 Feb 01; 48(3):602-8. PubMed ID: 3335023
    [Abstract] [Full Text] [Related]

  • 20. Effects of enhancing mitochondrial oxidative phosphorylation with reducing equivalents and ubiquinone on 1-methyl-4-phenylpyridinium toxicity and complex I-IV damage in neuroblastoma cells.
    Mazzio EA, Soliman KF.
    Biochem Pharmacol; 2004 Mar 15; 67(6):1167-84. PubMed ID: 15006552
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 45.